
AFrT/GE/ENG/92D)-23

AD-A259 587

FACE RECOGNITION WITH NEURAL NETWORKS

THESIS

DEnnis Lee Kimpp

Cami, S"DTIC
AfflT/GEENG/M2-23 EL ECTE

S JAN 0 7199331Eu

Ecadf ubi en; fiobtinulti

-3 1 04 1 6



AFIT/GE/ENG/92D-23

FACE RECOGNITION WITH NEURAL NETWORKS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering Accesion For

NTIS CRA&I
DTiC TAB
Unannounced EJ
Justification

By ...................................
Dennis Lee Krepp, B.S.E.E. Distý ibution I

Captain, USAF Availability Codes

Avail and I or
Dist Special

December, 199 M4d-

Approved for public release; distribution unlimited

--,



Acknowledgments

I would like to thank my thesis advisor, Dr. Steve Rogers, and the rest of my thesis committee,

Dr. Dennis Ruck, Dr. Matthew Kabrisky, and Dr. Mark Oxley. Their help made this thesis possible and

the experience rewarding. A special thank you goes to Dr. Ruck who provided the backpropagation

software that was the foundation for all the programming that followed.

I would like to thank Capt (now Dr.) Kevin Priddy and Capt Ken Fielding for their answers to

my many questions. I want to thank the rest of the Face Group, Capt Kevin Gay and Capt Ken Runyon,

for their support and humor during this research effort Their friendship will be treasured always. I

also wish to to thank Dan Zambon and Dave Doak for keeping the computers up and running at all

hours.

Finally, I want to thank my family, especially my lovely wife, Karen, for their support during

the past year and a half. Without them, none of this would have been possible.

Dennis Lee Krepp

ii



Table of Contents

Page

Acknowledgments .................................... ii

Table of Contents ..................................... iii

List of Figures ...................................... vii

List of Tables ............................................... viii

Abstract .................................................. ix

I. Problem Description ...................................... 1-1

1.1 Introduction .................................... 1-1

1.2 Background ..................................... 1-2

1.2.1 TUrk and Pentland at the MIT Media Lab. ......... .. 1-2

1.2.2 Face Recognition at AFIT ...................... 1-2

1.2.3 Cottrell at UCSD ............................ 1-3

1.2.4 Los Alamos National Laboratory ................... 1-3

1.3 Problem Statement ................................. 1-3

1.4 Research Objectives ................................ 1-4

1.5 Assumptions .................................... 1-4

1.6 Scope and Limitations ...... ........................ 1-5

1.7 Standards ...................................... 1-5

1.8 Approach/Methodology ............................. 1-5

1.9 Overview ...................................... 1-5

fiii



2

Pag

U. Literature Review ................................ 2-1

2.1 Introduction .................................... 2-1

2.2 The Biology of Face Recognition ..... ................... ..... 2-2

2.3 Feature Extraction and Data Compression ................. 2-4

2.3.1 Principal Component Analysis (PCA). ........... ... 2-4

2.3.2 PCA using a Linear Neural Network.. .............. 2-5

2.3.3 Feature Extraction and Data Compression in Nonlinear

Networks ................................. 2-9

2.3.4 Karhunen-Love Network for Feature Reduction ..... .. 2-12

2.4 Neural Networks for Face Recognition .................... 2-14

2.4.1 Cottrell Neural Network. ...................... 2-14

2.4.2 Backpropagation Neural Network for Face Verification... 2-16

2.4.3 Additional Network Research ................... 2-19

2.5 Summary ...................................... 2-19

IMI. Methodology ........................................... 3-1

3.1 General ....................................... 3-1

3.2 Algorithm Development ............................. 3-2

3.3 Feature Extraction and Clamification Using Identity Networks . . . 3-3

3.4 Verification and Classification Using .ad propagtion. ....... 3-5

3.4.1 Single Day ....... ......................... 3-5

3.4.2 Multiple Day Verification ........................ 3-6

3.4.3 Multiple Person Recognition ...................... 3-6

3.5 Neural Network Classification versus Karhunen-Lo~ve Transform . 3-7

3.6 Code Development ................................. 3-8

3.7 Summary ...................................... 3-8

iv



Page

IV. Results . .. .. ... .. . ..... . ...... .. ... .. .. ... .. . 4-1

4.1 General ................................ 4-1

4.2 Feature Extraction and Claussification Using Identity Networks ... 4-1

4.2.1 Feature Extraction ............................ 4-1

4.2.2 Classification Using Identity Network Extracted Features 4-3

4.2.3 Identity Networks and Multiple Day Data Clasuillcaton. 4-7

4.3 Verification and Classification Using Backp.pgation ....... 4-8

4.3.1 Single Day Verification ........................ 4-8

4.3.2 Multiple Day Verification ....................... 4-10

4.3.3 Multiple Person Recognition ..................... 4-14

4.4 Classification using raw data, Karhunen-Loive transform features,

and identity network extracted features ................... 4-15

4.5 Code Development ................................ 4-17

4.6 Summary ...................................... 4-17

V. Conclusions ........ ................................... 5-1

5.1 General ....................................... 5-1

5.2 Multiple Day Verification ....... ...................... 5-1

5.3 Identity Networks ................................. 5-2

5.4 Multiple Clan Recognition ............................ 5-3

5.5 Neural Network Extracted Features versus KLT .............. 5-3

Appendix A. Source Code .................................... A-I

A.1 Makefile ........ ............................... A-2

A.2 dkmain.c ...................................... A-3

A.3 backpmpx.c ..................................... A-12

A.4 dkiox.c ....................................... A-15

A.5 ps.c .......................................... A-25

A.6 psx.c ....... ................................. A-34

V



Page

A.7 utils.c ................................. A-39

A.8 display.c ....................................... A-45

A.9 globals-h ..................................... A-46

A.10 macros.h ...................................... A-46

A.I 1 globals.h ...................................... A-48

A.12 makedata.c ...... .............................. A-49

Bibliography ...... ....................................... BIB-i

Vita ................................................... VITA-i

vi



List of Figures

Figure Page

2.1. Oja PCA Network ................................ 2-6

2.2. APEX Network .......................................... 2-7

2.3. 5-Layer Network ........................................ 2-11

2.4. 3-Layer Network ........................................ 2-11

2.5. Network Architecture for Karhunen-Loeve Feature Extractor. (37) ........ 2-13

2.6. Cottrell Neural Network for Face Recognition ........................ 2-16

2.7. Holons derived by PCA from hidden unit responses. (5) .... ............. 2-17

2.8. Los Alamos National Laboratory Setup ............................ 2-18

3.1. 4-Layer Feature Extraction/Classification Network ...... ................ 3-3

3.2. Image compression, feature extraction and reconstruction ................. 3-4

4.1. Non-smooth Identity Network Learning ............................ 4-2

4.2. Slow Identity Network Learning ....... ......................... 4-3

4.3. Identity Network Learning, Eta = Varying .......................... 4-4

4.4. Identity Network: Input images versus reconstructed output images ........ .... 4-5

4.5. Original, Scaled, and Shifted Image .............................. 4-12

4.6. Identity Networkc Input images versus reconstructed output images using Motion

Segmentation .......................................... 4-16

vii



List of Tables

Table Page

4.1. Average MSE of an Identity Network ............................. 4-3

4.2. Classification Accuracy Using Identity Network Extracted Features as inputs to a

Cattrell (no hidden layer) backpropagation network ..................... 4-6

4.3. Classification Accuracy Using Identity Network Extracted Features as inputs to a

single hidden layer backpropagadion network ........................ 4-7

4.4. Classification Accuracy Using Identity Network Extracted Features of Multiple Day

Data ........ ....................................... 4-8

4.5. Classification Accuracies for Single day verification of 3 target subjects ...... ... 4-9

4.6. Classification Accuracies for Multiple day verification of 3 target subjects ..... .. 4-10

4.7. Classification accuracies of original images versus scaled and shifted versions of

original image ...................................... .. .... 4-11

4.8. Classification Accuracies for Multiple Day Verification using data sets composed of

50% target/50% nontarget images ............................... 4-13

4.9. False Acceptance Testing of Multiple Day Data ....................... 4-14

4. 10. Classification Accuracies for Multiple Classes using raw image data as inputs . . . 4-15

4.11. Classification Accuracies for raw image data versus Karhunen-Lobve ransform

extracted features versus identity network extracted features ............... 4-18

viii



AFIT/GE/ENG/92D-23

Abstract

The purpose of this study was to investigate and implement a neural network for face verification

and classification. The research concentrates on developing a neural network based feature extractor

and/or classifier which can be used for authorized user verification in a realistic work environment.

Performance criteria such as recognition accuracy, system assumptions, training time, and execution

time were analyzed to determine the feasibility of a neural network approach. Specifically, data was

collected using a camcorder with automatic intensity compensation. Additionally, two segmentation

schemes were used for data collection: manual segmentation and motion-based, automatic segmenta-

tion. The data consisted of over 2000, 32x32 pixel, 8 bit gray scale images of 52 subjects where each

subject had from two to ten days worth of data collected. The data base was then used to create a

number of training and test sets that varied by class size, training set composition, number of images per

class, and so on. The training and test sets were then used to train and test the classification accuracy of

the following networks: a back propagation network using the raw data as inputs; a back propagation

network using Karhunen-LoOve Transform coefficients, computed from the raw data, as inputs; and a

back propagation network using features extracted by an identity network as inputs.

The results of the various network tests indicate that identity network extracted features performed

well for single day captured data and poorly on multiple day data. Classification using the various

networks, in general, performed well on constrained, single day captured, data bases but performed

poorly when using data gathered over multiple days. For the multiple day problem, a verification

network using a single hidden layer with backpropagation performed very well and was found to be

most suitability for use in a face verification system.

ix



FACE RECOGNITION WITH NEURAL NETWORKS

I. Problem Description

1.1 Introduction

Autonomous face recognition is the process of locating and identifying faces in a scene using

pattern recognition techniques. While humans recognize faces many times a day with apparent ease,

automating this process has challenged researchers for the past two decades. What does an automated

face recognition system offer us to warrant the years of research this problem has received?

A system that automatically recognizes faces would be useful for several reasons. From a security

perspective, an automatic face recognition system could enhance current access control systems by

authenticating a users identity (32). Examples of such access control systems are secure computer

systems, bank automatic teller machines, and automatic card readers. In fact, any organization or

system that permits access based on a person's identity would find a face recognition system useful

(32). Other security applications for a face recognition system would be criminal identification and

scanning airports for terrorists. Finally, this system could be adapted for use in a speech recognition

system or a visual communications system (32).

The remainder of this problem description begins with a background review of face recognition

as it relates to pattern recognition and this thesis. i nis is followed by the problem statement, research

objectives, assumptions, scope and limitations, and standards. The approach to the problem is then

discussed and the chapter concludes with an overview of the remaining chapters.

1-1



1.2 Backgroand

This section briefly discusses the pattern recognition process and then highlights some of the

current research in the area of autonomous face recognition. The research highlighted below will be

discussed in detail in chapter two but is included here for completeness.

Traditionally, pattern recognition is broken down into three areas: segmentation, feature extrac-

hon, and classification (38). Segmentation is the first step; it is finding regions of possible signals. The

second step is feature extraction and in this step we search for the most important or significant ftatures

of the regions passed by the segmentor which can be used in the final step, classification. Classification

compares the extracted features to those of previously identified objects and identifies the object as one

of the previously identified classes. For this research the regions we desire to segment and identify are

faces but the approach is the same whether we are using faces, trucks, tanks, jeeps, or words in speech.

1.2.1 Turk and Pentland at the MIT Media Lab. Matthew Turk and Alex Pentland, from the

Massachusetts Institute of Technology Media Lab, have implemented an autonomous face recognition

system that also makes use of the Karhunen-Lobve Transform (40). While their system performs well,

it has limited application because of the enormous amount of computational power necessary to operate

the system-at present, the system requires three dedicated, high speed processors.

1.2.2 Face Recognition at AFIT. Face recognition at AFIT began in 1985 with early systems

that were slow and required a significant amount of human intervention (31, 35). Through the years,

various improvements were added and the system has evolved into what it is today (18, 33 27) The

current system is similar to the MIT system being developed by Turk and Pentland (36). However, the

AFIT system has one major improvement over the MIT system. That is, the current ART preprocessor

1-2



incorporates a centering routine and a gaussian window routine. These routines center the image

and draw a gaussian window around the image, thereby de-emphasizing the background. With this

improvement, the current AFIT system is 95 percent successful at identifying 55 face images (36). The

current AFIT system is used as a benchmark for this research effort.

1.2.3 Cottrell at UCSD. Garrison Cottrell of the University of California at San Diego has

been developing a neural network model approach to face recognition (11). His model is trained in a

two step approach that uses an identity network for feature extraction and a single layer backpropagation

network for classification. He has shown this network to be successful on limited databases.

1.2.4 Los Alamos National Laboratory. Another neural network approach to face recogni-

tion is being pursued at the Los Alamos National Laboratory (25). The lab uses a standard one-hidden

layer network trained by backpropagation using raw image data as inputs. Currently, the network is

limited to two class problems on a constrained data base but the preliminary results are very respectable.

1.3 Problem Statement

This research effort will focus on improving the classification performance and speed of the

autonomous face recognition system by implementing the feature extraction and classification phases

cf the recognizer in a neural network. The segmentation phase of the recognizer is being researched in

a collateral thesis by Captain Kevin Gay (13).

1-3



1.4 Research Objectives

The objective of this research is to improve the algorithm for feature extraction and classification

of faces in an autonomous face recognition system Specifically, four network configurations will be

developed and compared:

"* An identity network for data compression and feature extraction,

"* A back propagation network using the raw data as inputs,

"* A back propagation network using Karhunen-LoAve Transform coefficients, computed from the

raw data, as inputs,

"* And 3-layer and 4-layer feature extraction and classification networks using back propagation

and raw data inputs.

1.5 Assumptions

"* The distance from the subject to the camcorder is constant, with the exception of normal head

movement

"• A friendly user is assuned, ie. the head orientation is face front.

"* The network is expected to run on a Sun workstation.

"* If using automatic segmentation ...

- the face has been properly segmented from the background.

- preprocessing to center and gaussian window the face has been accomplished.

"* If using manual segmentation ...

1-4



- the face has been manually centered in the image.

- preprocessing to gaussian window the face has been accomplished.

1.6 Scope and Limitations

The scope of this thesis is to investigate the limitations of several new algorithms used for

autonomous face recognition. All conclusions are based on test data.

1.7 Standards

The performance criteria for the algorithms are classification accuracy, user interaction, and

modularity. However, accuracy is the most important of these criteria.

1.8 Approach/Methodology

A software environment will be developed and executed on a Sun SPARCstatdon2 that combines

existing software with new software written in ANSI C. All algorithms will be developed with mod-

ularity as a key consideration. Data for training and testing will be gathered under as many varying

conditions as possible to test the robustness of the algorithms.

1.9 Overview

Chapter Two presents a review of current literature related to face recognition systems with

primary emphasis on feature extraction and classification. Chapter Three provides a detailed description

of the methodology used in this thesis, and Chapter Four provides test criteria and results. Chapter

Five presents conclusions based on the test results and makes recommendations for future study.

1-5



II. Literature Review

2.1 Introduction

This review examines some of the current literature in the area of autonomous face recognition.

Face recognition research over the past several years falls into two categories: recognition using

features and recognition using the whole face or holistic approach.

Face recognition using features was first attempted by L. D. Harmon in the early 1970s. He

extracted features from profiles to identify the faces. His features were defined as the distance from the

tip of the nose to the mouth, the distance from the nose to the chin, the distance from the eyes to the nose

and other similar measurements (16). In addition to Hannon's method, other types of face recognition

using features involves segmenting a face and then extracting features from the segments. Whatever

the method, face recognition using features continues today with researchers all over the world (42, 2).

The second category of face recognition is the holistic approach. Research in face recognition has

moved towards a holistic point of view with researchers at the Massachusetts Institute of Technology

(M1T) (40, 39), the University of California San Diego (UCSD) (01, 5) and AFIT (36,15). The holistic

approach still involves extracting features, but the features, which are extracted using some type of

principal component analysis, are now taken from the entire face image, not just segments or profiles.

This research is based on the holistic approach and it is what will be discussed in the following sections.

The remainder of this review begins with some brief biological notes on human face recognition.

This is followed by a discussion of feature extraction and data compression using principal component

analysis and neural networks. The review continues with discussions on several networks used

for face recognition which include the Cottrell network, a standard multiple layer perceptron using

backpropagation, and the Tarr/Ruck network for Karhunen-Lobve transformations and classification.

2-1



Finally, several anecdotes are discussed that, while not directly related to this research, ae still part of

the face recognition literature and should be mentioned.

2.2 The Biology of Face Recognition

How does the brain accomplish face recognition? This is still a mystery but we are learning

more each day. Experts believe that the biological process of face recognition occurs on the underside

of both hemispheres of the brain in the temporal and occipital lobes (14). In other words, this process

is localized (found in a specific area) in our brains. This theory is supported by the work of Rolls,

Baylis, Hasselmo and Nalwa in their study of the response of specific neurons to faces (28). They

tested a group of face responsive neurons in macaque monkeys and recorded the neuronal responses

(action potential spikes per second) to a set of face stimuli and non-face stimuli. The results of their

study indicate that there are neurons that react primarily to faces.(28).

Localization is also supported by the work of J. C. Meadows and A. R. Damasio in their studies

of individuals who have lost the ability to recognize faces, a condition known as prosopagnosia. Both

researchers agree that patients with prosopagnosia, when they have come to autopsy, always have

bilateral lesions in the occipito-temporal regions of their brains (8, 20). Conversely, patients with

bilateral lesions in other portions of the brain (ie., occipito-parietal region) do not have prosopagnosia.

This also supports, albeit in a limited manner, the notion that the process is localized. Accepting

localization as fact, what information does this area of the brain require to recognize faces?

One theory, based on psychological experimentation, suggests that we store the information for

faces in a global to local scheme (41). In this experiment subjects were first asked to classify images

as faces or non-faces and the time to classify faceness was recorded. Then each subject was asked

to identify familiar faces which were either distinctive/unusual or typical faces. It was found that

2-2



faceness could be assessed very quickly while recognition took longer. Also, a distinctive face could

be identified more quickly than a typical face. As such, it was proposed that the difference information

(ie. , color of eyes, shape of nose, hair style, etc. ) is used in the identification process and the path.

Information that is the same (ie. , the general shape of a face, two eyes, two ears, etc. ) is used at a higher

level in the recognition process and is not stored for each particular face. This could be considered a

global to local type process which fits our human experience with face recognition because we often

say that a person looks like so and so except for their eyes or nose, etc. This global to local idea is

also supported in the prosopagnosia studies. Individuals with prosopagnosia can still identify a face as

a face, but they can not identify who the face belongs to. In fact, many prosopagnosia patients also

have difficulties with recognition of other objects such as a particular make of car or truck. As with the

faces, they can identify a car as a car but they can not tell what specific type of car it is (8). This implies

that we process general information first and then get down to the specifics for the actual identification

process, but what are the specifics?

Experts agree that something is stored or encoded in the face recognition neurons; however, they

disagree as to what that something is. One theory is that the information for a particular face is stored

in a grandmother cell (28). In other words, all the information for a particular person is encoded in a

single cell (neuron) and when we find that cell we know who the person is. A second theory, supported

by the work of Rolls and his colleagues is that the information for recognizing a face is stored in a coded

ensemble of neurons and these codes are recomputed whenever a new face is added to the system (28).

This theory was tested by recording the activity of face responsive neurons to a set of known faces and

then adding a novel face to the set and recording the responses to this new set. The tests indicated that

adding a new face alters the steady state response of some of the neurons in question for a short time

and then they reach a new, statistically different, steady state (28). This implies that information for

2-3



face recognition is stored in our face neurons and we know who an individual is based on the firing

pattern of this group of neurons. This also suggests that the entire code is changed, albeit very quickly,

each time a new face is added to the system.

In any case, the biological theories surrounding face recognition are as varied as the number of

researchers. The accepted theory today is that there are specific face recognition neurons in our brains

and the global (faceness) to local (identification) idea is gaining momentum. From a pattern recognition

point of view, this global to local idea could be considered data compression, which is important to the

design of a face recognition system.

2.3 Feature Extraction and Data Compression

Feature extraction and data compression are important problems in pattern recognition and image

analysis. Many times the goal is to find a set of features that represent the data as closely as possible and

compress the data at the same time. There are many approaches to this problem and one of the more

well known is Principal Component Analysis (PCA). Likewise, this problem has been addressed in

linear and nonlinear PCA neural networks and in autoassociation networks as an unsupervised learning

task (24). Each of these will be discussed in the following sections.

2.3.1 Principal Component Analysis (PCA). In general terms, PCA is a statistical method

used for extracting features from a set of data with high dimensionality. It is a solution to the curse of

dimensionality problem found in pattern recognition (9). PCA is a linear, orthogonal transformation or

projection of the data onto a new coordinate system where the axis ae uncorrelated and the maximum

variance of the original data is found in only a small number of coordinates (12). Dimensionality

reduction is achieved in this space by taking the coordinates which have the maxinum variance and

2-4



leaving out the coordinates with minimum variance. In mathematical terms, the basis vectors of the

new coordinate system are the eigenvectors of the covariance matrix of the data and the variances

are the corresponding eigenvalues (40). So in terms of PCA, the best projection, in terms of mean

squared error of reconstruction, from an M to an N dimensional space, where M > > N, is then the

N dimensional space which represents the N eigenvectors with the largest eigenvalues.

Researchers at the MIT Media Lab and AFIT use principal component analysis in their holistic

approach to face recognition because it is believed that specific features, such as eyes or nose, may not

be as important as the overall pattern of the face when it comes to recognition. A detailed review of

PCA using the Karhunen-Lo6ve transform can be found in a masters thesis by Pedro Suarez (36). This

approach is supported by the physiology and psychology of the face recognition process (40,41). While

the above process is mathematically sound, calculation of eigenvectors and projection coefficients is

computationally expensive. As such, the MIT face recognition system is run using three computer:

a Datacube Image Processor, a Sun 3/160, and a Sun Sparcstation. This system can perform the

recognition task at a rate of two or three times a second (40) but the system size makes it impractical

for current applications. Like the MIT system, the AFIT system is hosted on multiple computers.

The preprocessing software is hosted on a NEXT computer and a Silicon Graphics computer, and the

remainder of the software runs on a second Silicon Graphics computer. However, even with multiple

computers, the process still takes several minutes to run. The question becomes how do we improve

the speed of the system without giving up any of the accuracy? The answer may be a neural network

approach to PCA.

2.3.2 PCA using a Linear Neural Network, When considering a neural network approach

to PCA a starting point in much of the literature is the Oja algorithm (22). His network modeL shown in

2-5



Figure 2. 1, consists of a single linear neuron unit that uses a Hebbian type of learning rule. He showed

that if the input vectors are a stochastic process this network tends to extract the largest principal

component from the input vectors. This corresponds to the eigenvector in the covariance matrix that

has the largest eigenvalue.

XVx2q q!

• Y

xM

Figure 2.1. Oja linear PCA network which converges to the largest principal component of a stationary
input sequence (12).

The output of Oja's net, y, and the learning rule for updating the weights, q,, are

, = Eqdix (2.1)
i=1

Aqj =-- #(.iy - qy 2) (2.2)

where zxy is the Hebbian term that strengthens the connections when the input and the output are

correlated. The second term, -qpy2, is used to prevent instability and makes , q2 approach 1. Training

the net in this manner maximizes the variance of the output given the constraint that E qj = 1. The

2-6



disadvantage of the network is that it will only find the first principal component of the data set (12)

and in many cases more principal components are required in order to be useful for a given problem.

The research continued and several algorithms have been developed that find multiple principal

components of a set of data; one of the more recent algorithms is the Adaptive Principal-component

EXtractor (APEX) (17). APEX was proposed by Kung and Diamantaras in 1990 and is stated to

be recursive and adaptive in that, given the first m - 1 principal components, it will find the m'h

component. Additionally, they show that the m'h component is the largest component which is

orthogonal to the previous m - 1 components. Their network, shown in Figure 2.2, combines the

properties of Oja's linear PCA net with a decorrelation scheme proposed by Foldiak in (12) that causes

the network to work as a whitening filter.

71

2 71:o •3 _

Figure 2.2. APEX network: solid lines denote weights pi, wj and ar tained~ at the mth stage. (Not
that wj asymptotically aprah zero as the network converges) (17).

The outputs of the network are

Y = PX (2,3)

Y'. = Pz + el/ (2.4)

2-7



where x is the input vector, y is the output vector representing the first m - 1 output components, P

is the matrix of p'j weights of the first m - 1 components, and p is the row vector of thep mj weights

of the mth Output.

The equations for the mth component then become

AP = f((Y.mT -_ •!.P) (2.5)

AW = -- (ymyT + y~w) (2.6)

where P and -y are positive learning rates.

Finally, if the above equations are expanded for each individual weight, the resulting equations

are

Apj = f(jmZj - Vjprj),j 1 1... n (2.7)

Awj = -v(yyj "+ y2 Wj),j - 1... m - 1. (2.8)

A review of these equations shows that equation 2.5 is simply Oja's hebbian update rule which

was shown in (17) to force the outputs to the dominant principal components, and equation 2.6 is an

anti-hebbian rule which was shown to cause the mth output to be orthogonal to (or uncorrelated from)

the previous m - 1 components. Results of tests of APEX indicate that the principal components it

extracts are almost perfectly normalized and orthogonal to one another and are very close to the actual

components found using statistical PCA (17).

In addition to APEX, other algorithms for use in linear neural networks have been proposed

for PCA. Sanger (34) proposed an algorithm that uses non-local information which complicates the

2-8



analysis and Foldiak (12), mentioned earlier produces a set of vectors that span the same space as the

principal components but are not the exact principal components (1). Additionally, an algorithm based

on Successive Application of Modified Hebbian (SAMH) learning was proposed recently (1) which is

shown to extract the principal components in an adaptive manner, similar to APEX, but is claimed to

converge much more quickly.

PCA in linear networks is also supported by the work of Baldi and Hornik who showed that the

error surface for this linear type network has a unique minimum that corresponds to the projection onto

the subspace generated by the principal conponents of the input data set (3). However, they also state

that the optimum solution using principal components could also be obtained using other well-known

algorithms for computing eigenvalues and eigenvectors, and by numerical analysis standards, these

algorithms are superior to using a linear neural network to extract principal components (3). Likewise,

given data sets containing outliers, the linear networks have been shown to degenerate (19). With

this in mind, why not disregard the notion of back propagation neural networks for feature extraction

altogether? The answer, in addition to the simplicity of error back propagation, it can be applied to

nonlinear networks, discussed in the next section, which have been shown to handle the outlier problem

(19, 6). Additionally, it is very successful in a variety of other problems where there is no a priori

knowledge of the structure of the mathematical properties of the ideal solution (3).

" 2.3.3 Feature Extraction and Data Compression in Nonlinear Networks In applications

like pattern recognition and speech recognition an important problem is to find the relevant features

in order to compress the data and still allow for correct classification or representation of the data

(23). A reasonable requirement in data compression is that the original pattern can be restomd from

the compressed data with some acceptable level of error. This implies that feature extraction is data

2-9



driven and independent of any pattern and in terms of neural networks, this is an unsupervised or

selfsupervised learning task (23). One approach to the feature extraction problem has been the use

of nonlinear autoassociation neural networks which have well-known approximation properties, can

be expected to improve performance (23) and can solve the encoding problems where strict principal

component analysis is degenerate (6). These networks are generally feedforward 3-layer, Figure 2.4,

or 5-layer, Figure 2.3.

The 5-layer network of Figure 2.3 is believed to be more robust because it can theoretically

compute any continuous mapping from inputs to the second hidden layer and another mapping from

the second hidden layer to the output. The first and third VNyers are nonlinear (usually sigmoidal)

and layers one, three, and five are linear. The output of layer three (p units), can now be used as the

extracted features which are inputs to a classifier. The mapping from layer one to two can be considered

a nonlinear PCA, and the mapping from two to three can be considered a linear PCA. In this case the

dimensionality was reduced from n to p. However, a significant problem with this network is that the

number of units in the nonlinear layers must be large, N >> n, in order to get good approximation

capabilities for reconstruction (23). This constraint can be a problem for any network when training

time is considered, especially if the number of inputs is already large1.

An alternative to the 5-layer network is the nonlinear 3-layer network of Figure 2.4 which is

also one solution to the training time problem of a 5-layer network. The 3-layer nonlinear network has

hidden units that de-velop weight vectors that are believed to span the principal subspace of the input

vectors, ie. they develop a distributed representation of the principal components (7). This result was

found empirically by presenting the eigenvectors of the input images as inputs to the network (6). In

IFor example, assume the input image is 32x32 (1024 pixels), the second layer and fourth layer of nut we also 1024
nodes (not lawjer as is suggested), and the third layer is only 40 nodes, this network is estimated, conservatively. to require
80 days to train (based on curent run times for similar networks on Sun workstations, see chapter 4).

2-10



N N
n Pn

fl1L W2 3 U4
x y

S(.) S(.)

Figure 2.3. 5-layer network with linear and nonlinear layers. The number of units in a layer is given
above the box, with N >> n > p, and the output is given below the box. (23).

n n

N

Figure 2.4. 3-layer network with nonlinear hidden and output layers. The number of units in a layer
is given above the box and the output is given below the box.

other words, if the network is treated as a matrix M, where M represents the learned weights of the

input layer, then find E' such that

E'= ME (2.9)

where E is the matrix formed by the k = N, Karhunen-Loove generated eigenvectors of the input

image in descending eigenvalue order as the columns. If the network spans the principal subspace of

dimension k, then E and E' are related by

I' = E'ET (2.10)

2-11



where I' is the identity matrix. The results of this technique show a noisy first component with the rest

of the components being slightly shortened (ie. the diagonal entries of I' are slightly less than 1) (6).

It is believed that the hidden units develop a distributed representation of the principal components of

the input data because the variances of the output activations of the hidden units are distributed more

evenly than the variances of the components in the strict Karhunen-Lobve transform (6).

It has been suggested that reducing the dimensionality with a 3-layer network is no better

than using the standard Karhunen-Lobve transform (21), however, this net has been used for image

compression with good results (23, 5, 6, 7) and it is believed that the advantages of the nonlinearity

will come out when the problem is nonlinear (6).

2.3.4 Karhunen-Loive Network for Feature Reduction A network was developed by Gre-

gory Tarr and others at the Air Force Institute of Technology that performs feature reduction using a

variation on the Karhunen-Lo.ve transform (37). The network, shown in Figure 2.5, is described in

detail in (37) but the idea is as follows. Every random vector, X, in a data set can be represented by a

linear transformation of X with a matrix, A, such that

X=AY (2.11)

where A is composed of the normalized eigenvectors of the data, X, covariance matrix in descending

eigenvalue order and A does a rotation in the vector space of X to the new vector Y.

If the columns of A are orthonormal and form n linearly independent basis vectors, then the

following conditions

AT A = I and A-' = AT (2.12)

2-12



Output Nodes

alowte eto t eau wrten asN

Y=A TX (2.13)

where the dimensionality of Y is equal to the dimensionality of X, and Y is the vector of Karhunen-

LoA~ve coefficients found from the rotation of X to Y. If the goal is to reduce the dimensionality of Y,

and if for all X presented to the network, some of the nodes of Y were very small, zero, or constant,

then they would not be necessary to reproduce an estimate of X:

yim)i + bA, (2.14)

where b, coefficients are independent of X and y, coefficients are dependent on X (37). Now, if the

objective is toclassify and not reproduce X,then since thevalue bi, i=m + I... n,is constant or

2-13



nearly zero, it can be ignored. The number of eigenvectors chosen from A is then m and the network

has effectively reduced the dimension of the data seL Likewise, since we are using PCA to reduce the

dimension we have extracted the primary features which can now be used for classification of the data.

The classification is performed by the top portion to the network, see Figure 2.5. It should also be

noted that in order to make the network training easier the data must be statistically normalized before

presentation to the feature reduction portion of the network and then statistically normalized once more

before presentation to the classification portion of the network (37).

2.4 Neural Networks for Face Recognition

2.4.1 Cottrell Neural Network. A neural network for face recognition is being developed by

Garrison Cottrell at the University of California at San Diego (11, 5). His network, shown in Figure

2.6, is trained using back propagation and is composed of his image compression (auto-association)

network and a single layer perceptron. The parameters for the networks in Figure 2.6 are as follows:

"* Auto-associator Network

- Input nodes: 4096

- Hidden nodes: 40, sigmoid activation range [-1,1]

- Output nodes: 4096, sigmoid activation range [-1,1]

- Momentum: 0

- Hidden layer learning: 0.0001

- Output layer learning: 0.1

"* Classification Network

2-14



- Input nodes: 4096

- Hidden nodes: 40, signoid activation range [-1,1]

- Output nodes: 20, sigmoid activation range [-1,1]

- Momentum: 0

- Hidden layer learning: Fixed weights

- Output layer learning: 0.1

The basic operation of the network is as follows. First, the auto-associator network is trained to

match output images to input images. The images for this experiment were 64x64 pixels, brightness

normalized, and manually centered. There were eight images for each of 20 students, 10 male and 10

female, making a total of 160 images. The auto-associator network used for this phase consists of 4096

(64x64) input nodes, 40 hidden nodes, and 4096 output nodes. Successful training is defined as the root

mean square pixel intensity error rate being less than 12 gray levels between input and output which

corresponds to an average squared error per unit of .0017. The error rate is met in approximately 50

epochs which indicates that the network is trainable in a short amount of time. Dr. Cottrell theorizes that

the hidden layer compresses the data and extracts features that represent a distributed representation of

the principal components which are similar to the eigenfaces of the MIT face recognition system. He

supports this theory by forming the covariance matrix of the hidden unit activations over all images and

extracting the principal components using strict principal component analysis. The resulting principal

components are then decompressed by running them through the output layer of the auto-association

network. Figure 2.7 shows images reconstructed in this manner, and they are similar, at least in

appearance, to the MIT eigenfaces.

2-15



Auto-association Network Classification Network

4096 Output nodes 20 Output nodes

]•pu. 
liyet40hdi ,40 iddinisoda 0

4096 Input nodes 4096 Input nodes

Figure 2.6. Left is the auto-association network used to train the input layer weights for the network
on the right. The output layer weights on the classification network are trained using
backprop. (5)

After the auto-associator network is trained, the weights between the input and hidden layer

are fixed and the output of the hidden layer is connected to a smaller (20 output nodes), single-layer

classification network. This smaller network is then trained to classify (identify) each image; the

network is also trained to identify, and classify as 'unknown', nonface images at this time. The test

results for this network were 99 percent recognition accuracy. However, the data base used was

constrained to 20 subjects and all images were captured on the same day and time. The capabilities

of this network have not been tested over multiple days of images or for larger data bases and it is

believed that these tests will cause problems for the network.

2.4.2 Backpropgation Neural Network for Face Verification. Researchers at the Los

Alamos National Laboratory have developed a face verification system that uses a 3-layer neural

2-16



i~igure 2.7. Holons derived by PCA from hidden unit responses. (5)

network trained by back propagation (25). The network parameters, which were arrived at empirically,

are shown below:

"* Input nodes: 1400

"* Hidden nodes: 20, sigmoid activation range [0,1]

"* Output nodes: 1, sigmoid activation range [0,1]

"* Momentum: 0.50

"* Hidden layer learning: 0.15

"* Output layer learning: 0.30

The network is fully connected and all weights are initially set to random values uniformly

distributed between -0.1 and 0.1. The input vectors are scaled to the range [-1,1] and the network

was trained to output a 1.0 for the target and a 0.0 for outputs other than the target. The training was

stopped after 15,000 iterations. In all cases the number of target pictures in the data bow was artificially

forced to be 10 percent of the total by replicating the target images.

2-17



The data base used contains 11,416 images of 760 different people with the number of images

per person ranging from 5 to 20. All images were aquired using a video camera with VideoPix installed

on a Sun Microsystems SparcStation IPC computer. As can be seen in Figure 2.8, the distance from

the camera, background, and lighting conditions were kept as constant as possible.

6ft 3ft 3ft

45,
Camera •Subject

Background

Lights

Figure 2.8. Setup used for capturing images at Los Alamos National Laboratoy. Images are then
used in a Backpropagation Network. (25)

The network was tested using various compositions of training data. The training sets consisted

of 5, 10, 15, or 20 percent of the data base either randomly selected or from specific demographic

groups. The results of the verification tests were averaged over all training scenarios and the numbers

show a 99.997 percent correct rejections of non-targets and a 91.3 percent correct acceptances of

targets. As in the Cottrell tests, the data used for this network testing was captured during a single

sitting on one day. To be useful, a verification network must perform well on multiple days of data

and this network is not expected to perform well on multiple days. Additionally, this network has not

been tested for classes of data larger than one so the upper limits of the network are unknown. These

concerns will be addressed in this research.

2-18



2.4.3 Additional Network Research An image recognition system which uses an infrared

illumination system to overcome ambient illumination is currently being developed in England (10).

The system is based on a neural network known as WISARD and is reported to be capable of face

recognition against background scenes. The drawback of this system is the complexity: it requires two

cameras, control hardware, an IR Illumination System, Training Software, and WISARD hardware.

Likewise, it requires a significant amount of memory because two 800x540 images are taken for every

scene.

In addition to WISARD based system, a neural network for face recognition based on a multilayer

perceptron and shared weights has been introduced in France (4). It is believed that this sytem

will handle changes in lighting and rotations and face translations by adding additional prototypes.

Preliminary test results have yielded acceptable results but the database consisted of only 10 subjects.

This system will also require large amounts of memory because the images used were 256x256 pixels,

with 70 prototypes captured per person. This equates to approximately 640 Megabytes of data.

2.5 Summary

This chapter presented several neural network approaches to feature extraction, data compres-

sion, and classification. Specifically, in relation to face recognition, an identity network, a Cottrell

classification network and a backpropagation network were discussed. Each was reported to perform

well for face recognition, however, the data bases used were limited in size and/or in the number of

classes. These limitations will be addressed in this research by increasing the size of the data bases

and increasing the number of classes in the data bases. Additionally, the capabilities of these networks

for data captured over multiple days has not been investigate&c Therefore, this research will also focus

2-19



on capturing data over nudtiple days to determine how this type of data effects the networks described

previously. Chapter 3 presents the methodology used to address these issues.

2-20



III. Methodology

3.1 General

The objective of this thesis was to investigate various neural networks for face recognition

to determine their capabilities as feature extractors and classifiers. Since one of the criteria was

to implement the algorithms on Sun workstations, the first task was to port an existing multilayer

perceptron algorithm onto a Sun workstation and test its operation. Next, the algorithm was enhanced

to work in the following modes (refer to Appendix A for code):

"* As a multilayer perceptron (MLP) with sigmoidal or symetrical sigmoidal activations

"* As an identity network for image compression and feature extraction

"* As a Cottrell classification network

"* As a 4-layer feature extraction and classification network

After the MLP algorithm was ported and tested, the second task was to develop and test the

identity network. Next, the problem of individual verification was examined. For this task, the

algorithms were used to verify individuals in a two-class problem where class 1 signified a positive

verification and class 2 an unknown or negative verification. Next, the individual verification problem

was expanded to include multiple days. The multiple day problem is an important extension because it

has not been investigated in the literature to date. After verification tests were complete, the algorithms

were used in a large scale recognition problem. This differed from the verification task in that the

network was now a multiclass problem with many individuals to recognize in the database and this

is a much more difficult problem than verification. The databases used in both the verification and

3-1



multiple class tests were compared using a standard multilayer perceptron and the neural network

feature extractor/classifier. Additionally, the performance of a network using standard Karhunen-

LoAve Transform (KLT) coefficients as input features was compared to the neural network extracted

features. The final task was to describe the algorithms developed to implement the above objectives.

3.2 Algorithm Development

The first phase was to port an existing MLP algorithm with back propagation learning to a Sun

workstation. The MLP algorithm used for this phase allowed a maximum of three layers of nodes

(input, hidden, and output) and used sigmoidal activations in the hidden layer and output layer. The

signoids in this case had limits of [0, 1]. The algorithm was then modified to function as both a Cottrell

and an Oja identity network. For this, symmetrical sigmoid activation functions, limits of [-I,I], were

added to the algorithm and were interchangeable with the current sigmoid activation functions. The

difference between the Cottrell identity network and the Oja network is that the Oja network uses linear

activations on the output layer. Additionally, the capability to display the network input image and the

output image was added to allow for visual verification of the performance of the identity networks.

The next enhancement to the algorithm was to allow it to perform as a Cottrell face classification

network. This meant that the network algorithm had to initialize and learn the output layer weights but

the input layer weights were those previously learned from an identity network algorithm. The final

enhancement to the algorithm was to create a 4-layer network for feature extraction and classification.

This was done by adding another layer to the Cottrell classification network. It is believed that this

additional layer will allow for increased accuracy in the classification of data since it essentially adds a

hidden layer to the classification portion of the network. It is simply a backpropagation network whose

inputs are the outputs of the hidden layer of an identity network, see Figure 3.1.

3-2



Output Nodes

Extracted F-atums am

inputs to ClOaficaido

Input Nodes (Image vector pixel values)

Figure 3.1. 4-Layer network for feature extraction and classification. The input layer consists of
the input layer of a previously trained identity network and the upper layers consist of a
multilayer perceptron with backpropagation learning.

3.3 Feature Extraction and Classification Using Identity Networks

The goal for this task was to determine whether or not an identity network, shown in Figure 3.2,

could extract features that were meaningful as inputs to a classification network. The idea was to allow

the identity network to learn a compressed representation of the data and reconstruct it.

The data for this task and subsequent tasks consisted of 32x32 (1024) pixel, 8 bit gray scale images

of faces that had been captured on the Sun workstations using VideoPix. Each individual had between

10 and 20 images captured on any given day with a total of 800 images of 49 different individuals. All

images were windowed with a gaussian window routine to deemphasize the background.

3-3



The network required for feature extraction consisted of 1024 input nodes and 1024 output

nodes. The number of hidden nodes used determined the amount of compression, or the number of

features extracted, and this number was varied from 10, to 20, to 40. 40 was used as an upper limit

due to training time required. The network was trained until the averaged mean squared error per pixel

(MSE/P) between the original image and the recmcstructed image was less than .0034 which corresponds

to 25 gray scale levels per pixel or 10 percent reconstruction error per pixel. The reconstruction in

this manner is recognizeable to a human as will be shown in chapter 4. MSE/P was found using the

following definition
M N.2

MSE/P = E' 1=j E=l (INij - OUT,)2  (31)
(M)(N)

where N is the image size in pixels, M is the number of images, and IN and OUT are, respectively,

the input and output node values.

Identity Net
n n

N

O=wL4[O

Input Image Output Image

Hidden node outputs
are extracted features

Figure 3.2. Image compression/feature extraction and reconstruction procedure: The outputs of the
hidden nodes are the features used as inputs to a classification network. (11, 5).

3-4



In addition to varying the number of hidden nodes, the size of the database in terms of the number

of classes was also varied to determine what effects, if any, this had on the networks. The databases

used for these tests were varied from 10 classes, to 30 classes, to 49 classes.

3.4 Verification and Classification Using Backpropagation

This task is divided into two phases: single day verification and multiple day verification. The

two differ in the data sets used for training and testing the network. Single day data are images that

were captured on one day only within a 90 second window for each individual. Multiple day data are

images that were captured over several days for each individual.

3.4.1 Single Day For this task several databases were generated that had the target individual

to verify as class I and images of other subjects as class 2. Multiple runs were made of each database

and the average accuracy (correct verification) was recorded. The minimum number of images used

in any database was 100 to keep in line with the testing performed in (25). The mix of individuals in

each data set was 20/80, which means that 20 percent of the images in the data set were of the target

individual (class 1) and 80 percent were of nontargets (class 2). Nontargets consisted of 2 images each

of other individuals in the data base.

The total number of images in each database was 50: 10 for the target (class 1) and 40 (2 images

each of 20 other individuals) for the non-target (class 2). Each database was trained and tested using

the following:

e A standard multilayer perceptron with nonlinear activations on the output layer and hidden layer,

* A Cottrell (single layer) classification network with Cottrell identity network extracted features

as inputs,

3-5



9 The 4-layer network which uses identity network extracted features as inputs to a classification

network with a hidden layer.

This totaled 6 tests for each database. There were also additional tests to determine the numbers of

hidden nodes and iterations which provided for the best performance.

3.4.2 Multiple Day Verification This task is one of the most significant contributions of this

thesis because it has not received attention in the face recognition literature. It is the verification of

individuals using databases that are generated over time. Most research consists of images that have

been captured in a relative short period of time, one or two minutes, and under very strict conditions.

This task was developed to test the system over less constrained input images because, in reality, we

change from day to day. The questions are then, how does data from multiple days effect the accuracy

and what are the limitations of this system? The approach was as follows:

1. Use the databases from the individual verification task to train the various networks.

2. Test each network using data captured from a new day.

3. After testing, add the new days data to the training database and retrain the network.

4. Go to step 2, and continue this process for the desired number of days.

3.4.3 Multiple Person Recognition For this experiment, the size of the database was in-

creased as well as the number of classes. This is a more difficult problem than individual verification

because we are now attempting to classify (recognize) many faces as opposed to just one face. The

database for this task consisted of 800 images of 49 different individuals. Tests were accomplished

on multiple class problems using 10 classes (10 different people), 30 classes, and 49 classes. As in

3-6



earlier tests, each individual had 10 or 20 images captured and the data was randomly separated in each

case to be 60 percent training data and 40 percent test data. The point of this part of the study was to

determine what effects larger databases have on the networks being tested.

Several questions to be answered are listed below.

"• What is the trade-off between the size of the database and classification accuracy?

"* How many hidden nodes are required for a given number of classes?

"* Do larger databases make training time prohibitive?

3.5 Neural Network Classification versus Karhunen-LoAve Transform

For this part of the study the classification accuracy using the identity network extracted fea-

tures was compared to classification accuracy using standard Karhunen-Lox-ve Transform features

(coefficients). The results for multiple person recognition using the Karhunen-LoIve Transform are

documented in a previous thesis by Pedro Suarez (36) and in a collateral thesis by Kenneth Runyon

(30). Suarez showed that the Karhunen-L.ove Transform, using single day data, obtained an accuracy

of 95 percent on 55 faces (classes of data). Runyon used the Karhunen-Lobve Transform on data

gathered using a motion based segmentation system developed in a thesis by Kevin Gay (13). Runyon

had data sets for single day, multiple classes and two day, multiple classes. Using the motion segmented

data and the Karhunen-Love Transform Runyon achieved accuracies of 77 percent for single day and

32 percent for two day data using 23 faces (classes of data). The testing in this section will be for

a comparison of the Suarez and Runyon systems to the neural network system. As such, data for a

multiple class, single day training and multiple class, two day training will be used for comparisons.

3-7



Additionally, the data sets used for single and two day testing in the neural networks will be tested in

the Runyon system.

3.6 Code Development

All code for this thesis was written in ANSI standard C. Some routines were developed specif-

ically for this thesis, some were borrowed from others and some were taken from Numercal Recipes

In C (26). Code developed for this thesis is included in Appendix B.

3.7 Summary

This chapter presented the methodology for investigating various neural networks used for

feature extraction and classification of face image data. Specifically, an identity network was developed

and tested as a nonlinear neural network feature extractor. Likewise, a single layer (Cottrell) and a

multilayer backpropagation network were developed for use as classification networks with identity

network extracted features as inputs. Additionally, a backpropagation network for verification and

recognition, using data gathered over multiple days, was developed and tested. In all cases, data bases

used for testing and training were varied by the number of exemplars used, by the number of classes,

and by the days on which the data was gathered. Test results for these networks are found in Chapter 4.

3-8



IV Results

4.1 General

This chapter presents the test results for the tasks outlined in Chapter 3. Images used were 32x32,

8 bit gray scale that were captured using a Sun workstation tool called VideoPix. More information on

VideoPix can be found in a collateral thesis (13). Images were preprocessed to add a gaussian window

around the faces in order to de-emphasize the background.

4.2 Feature Extraction and Classification Using Identity Networks

4.2.1 Feature Extraction The image compression capabilities of the identity network was

tested first because the outputs of the hidden layers in such a network will be the extracted features for

use in a classification network. The network used, shown in Figure 2.4, had the following parameters

which were based on the work of Cottrell (5) and Oja (23):

"* Input nodes: 1024

"* Hidden nodes: 10, 20, or 40, sigmoid activation range [-1,11

"* Output nodes: 1024, sigmoid activation range [-1,1]

"* Momentum: 0.

"* Hidden layer learning: 0.0001

"* Output layer learning: 0.1

Training the network using these parameters, especially as the number of classes increased,

caused the output error to begin bouncing slightly, see Figure 4.1, indicating that the learning rate used

could be too large.

4-1



ID Net Learning: Eta - 0.1 ID Net Learning: Eta * 0.1
100 -10- - - - -

80 - 4 ---- ---- 8 - ---

6 0 -- -- - ---- -- ---- --- . . ..6. . - - .. .. .+ . . . -. . . -

40 4-

I I I•

.. . . .. . . . ........ . . . . . . .- . .T . ... .t . . .. . . . .f -
40 020 o I 2

0 2000 4000 6000 8000 100001200014000 0 2000 4000 6000 8000 100001200014000

Plot A Iterations Plot B Iterations

Figure 4.1. Non-smooth identity network learning. Plot B represents a more detailed look at Plot A.
Non-smooth learning, refer to Plot B, can be seen after 4000 iterations, indicating that
the learning rate is too large. In this case eta = 0.1

The solution was to retrain the network using a smaller output layer learning rate; 0.01 instead of

the 0.1 of the original training. This solved the non-smooth behavior, see Figure 4.2, but the final MSE

was now generally above the target range of 3.5 after the desired number of iterations. This problem

was solved using the following variable learning rate: 0.25 for epoch number 1, 0.1 for epochs 2-25,

and 0.01 for epochs 26 and higher. The increments of 25 epochs were chosen through trial and error.

This variable learning provided for a smoother MSE curve, see Figure 4.3, and limited the training

time of each network, run on Sun SPARCstation 2's, to 8 hours or less.

With the parameters now defined, the identity network performed as desired and the output of

the network at various stages of learning is shown in Figure 4.4. As evidenced in the figure, the

network can learn to compress and reconstruct, to an acceptable level, the images in a data set. Results

of testing the network using various class sizes and hidden nodes is shown in Table 4.1.

The table lists the final average MSE for all images in the training set after 15,000 iterations.

The results show that the target MSE of 3.5 or less was achieved for 10 and 30 classes but was slightly

4-2



ID Net Learning: Eta = 0.01

100 - - . • 1- w !

80

60 _ __ __

\i i i i

40 .-- 4--

20

0 - - -.
0 2000 4000 6000 8000 100001200014000

Iterations

Figure 4.2. Slow identity network learning indicating that the learning rate is too small. In this case
eta = 0.01

Table 4.1. Average MSE of an Identity Network after 15000 iterations for varying class sizes and
numbers of hidden layer nodes. For the Identity Network, inputs = outputs = 1024.

10 nodes 20 nodes 40 nodes
10 classes 2.7 1.6 0.9
30 classes 3.3 2.3 21
49 classes 5.3 4.0 7.3

higher for 49 classes. The 15,000 iteration limit was placed on the networks to limit the training time

and it is believed that the final error for 49 classes could be lowered given a much longer training time:

this was tested with a single run where a final MSE of 3.8 was reached after 50, 000 iterations.

Finally, it should be noted that the input layer weights learned by each identity network were

saved for use as the input layers of the classification networks because the output activations of this

layer would be the features used in the classification networks.

4.2.2 Cluusflication Using Identity Network Extracted Features With the identity networks

trained, the next phase was to test how well features extracted from the identity networks worked in

4-3



ID Net Learning: Eta * variable ID Net Learning: Eta = variable
100 I0 , - - - - -, ,10

80 - --- - -- - --- -- -

60 -- 6 ----- - -.----

40-- ------- 4---

20 i i i- 220 0---- I-------

0 2000 4000 6000 8000 100001200014000 0 2000 4000 6000 8000 100001200014000

Plot A Iterations Plot B Iterations

Figure 4.3. Identity network learning obtained with variable learning rate. The net learns quickly at
first and more slowly and smoothly as the iterations increase. Plot B represents a more
detailed look at Plot A.

a classification network. Recall that the extracted features used here are the output activations of the

hidden layer nodes of an identity network, refer to Figure 3.2. For this test, the network used is that

shown in Figure 3.1 where the input layer is the fixed weights from the previously trained identity

networks and the output layers are a backpropagation network with the following paramneters.

", Input nodes: 1024

"* Hidden layer I nodes: Fixed by Identity net training at 10, 20, or 40

", Hidden layer 2 nodes: Varied from 0, for a Cottrell classifier, to 50

"* Output nodes: Multiple classes of 10, 30, or 49

"* Momentum: 0.50

"* Hidden layer learning: 0.15

"* Output layer learning: 0.30

4-4



Eu,,.,
In 0 In 3K In 6K In 9K In 12K In 15K

Out 0 Out 3K Out 6K Out 9K Out 12K Out 15K

Figure 4.4. Identity network input images versus reconstructed output images at selected iterations
of 0, 3000, 6000, 9000, 12000, and 15000.

* Activation Function: Symmetrical sigmoid, range [-1,1], at hidden layer 1 and sigmoid with

range [0,1 ] at hidden layer 2 and the output

The results of the various classification network configurations are summarized in Tables 4.2

and 4.3, which show that the features extracted from the identity networks are acceptable features to

classify the data.

The results show that the feature extraction and classification networks used by Cottrell (a 100/1

compression or 10 hidden nodes in identity network and no hidden layers in the classification network)

had a significant decrease in classification accuracy as the number of classes was increased. However,

the accuracy was improved by decreasing the Cottrell recommended compression of 100/1 to 25/1 (40

hidden nodes in the identity nets). Additionally, adding a hidden layer of nodes to the classifier also

improved the classification accuracy of the test set, refer to Table 4.3. As the table shows, varying

4-5



Table 4.2. Classification Accuracy Using Identity Network Extracted Features as inputs to a Cottrell
(no hidden layer) backpropagation network. As the class size increases the Cottrel network
using 10 input features performs poorly. The accuracy was greatly improved when the
Cottrell network was modified to have 20 and 40 input features.

Cottrell Classifier Test Set Accuracies
Input Features Output Classes Test set accuracy

10 10 87.5%
10 30 85.0%
10 49 66.0%
20 10 95.0%
20 30 97.0%
20 49 91.8%
40 10 85.0%
40 30 96.7%
40 49 97.9%

the number of hidden nodes (between 10 and 50) in the classification portion of the network had a

slight impact on the test set accuracy; too few or too many nodes in the hidden layer caused the test

set accuracy to decrease. The trade off then is between the accuracy desired and the training time

involved for larger networks. As stated earlier, the identity nets with 40 hidden nodes required 8 hours

of training time on Sun workstations; this must be added to the time to train the classification portion

of each network, and this time grows as the number of hidden nodes is increased. However, given the

trade offs, the bottom line here is that the features extracted using the identity networks can be used to

classify the data with acceptable accuracy.

When comparing these results to those obtained by Cottrell (11, 5), a 100/1 compression ratio

(10 hidden nodes) did not yield the 99 percent accuracies he reported. In fact, as the number of classes

was increased to 49, which is over twice the 20 classes Cottrell used, the accuracy drops to a low of only

66 percent. However, by increasing the number of hidden nodes to 40, which increases the number

4-6



Table 4.3. Classification Accuracy for test data using Identity Network Extracted Features as inputs
to a single hidden layer backpropagation network. This type of network is an improvement
over the Cottrell classification network. Accuracies are listed with respect to the number
of nodes in the hidden layer. All training sets obtained a 100% training accuracy during
training.

InputFeatures [Output Classes 10f e nodes 2040nodes 50 nodes

10 10 90.0% 90.0% 97.5% 92.5% 90.0%
10 30 80.8% 85.0% 89.1% 85.0% 85.0%
10 49 64.3% 71.4% 73.0% 73.0% 75.0%
20 10 95.0% 95.0% 95.0% 97.5% 95.0%
20 30 88.3% 91.6% 93.3% 94.1% 89.1%
20 49 77.0% 84.1% 89.7% 88.2% 86.2%
40 10 85.0% 95.0% 85.0% 85.0% 80.0%
40 30 92.5% 94.1% 96.7% 93.3% 91.7%
40 49 80.0% 91.8% 91.8% 91.3% 92.8%

of features (inputs) used in the classification network, the classification accuracy increased over 30

percent. Therefore, modifying the Cottrell identity network to a 25/1 compression ratio allows the

network to perform well for class sizes as larger as 49. It is also important to note that for this research

the input images were 32x32 pixels and Cottrell used images of 128x128 pixels; in other words, the

modified identity network (ie. 25/1 compression) performs well and allows a 75 percent reduction in

the amount of input data required.

4.2.3 Identity Networks and Multiple Day Data Classification For this test, data gathered

on a second day was used to test the identity networks generalization capabilities for feature extraction.

Specifically, the data from day 2 was input to the previously trained identity networks (trained using day

I data) and the features for that data (activations of the hidden nodes) were saved. The features were

then tested using the weights of the previously trained classification networks of Table 4.3. Results of

this testing are shown in Table 4.4. These results show that the identity networks do not generalize

4-7



well over multiple days of data. Likewise, adding additional days worth of data to the data sets did

not improve the classification accuracy. This is because multiple days of data create problems for the

identity networks; the identity network can minimize the MSE of the training set but when multiple

days of data are used, the error on the test set remains a magnitude higher which means that the test set

error, in terms of reconstruction, is plus or minus 100 percent. As such, the features extracted by the

identity network for the test set are not adequate for proper classification.

Table 4.4. Classification Accuracy using Identity Network Extracted Features of multiple day data as
inputs to a 2 weight layer backpropagation network for varying numbers of hidden layer
nodes and a single weight layer Cottrell classification network. NOTE: 0 nodes represents
the Cottrell network results.

Output Classes Input Features 0 lOnodes 20 nodes 30 nodes 40 nodes 50 nodes o0 ;&des
10 10 5.0% 5.0% 12.0% 10.0% 3.0% 10.0%
10 20 5.0% 8.0% 8.0% 10.0% 5.0% 10.0%
10 40 10.0% 19.0% 19.0% 20.0% 14.0% 10.0%
30 10 5.0% 5.0% 3.0% 1.0% 3.3% 3.3%
30 20 5.0% 6.7% 2.3% 4.3% 4.7% 3.3%
30 40 6.0% 4.7% 5.3% 5.3% 3.3% 3.3%

4.3 Verification and Classification Using Backpropaption

4.3.1 Single Day Verification The images used for this test had been captured during a single

sitting of each subject over about 90 seconds. The training and test data sets were generated such that

the target subject (for verification) was class 1 and all other faces in the data sets were class 2. The

network used for this test had the following parameters:

"* Input nodes: 1024

"* Hidden layer nodes: 10, or 20

4-8



"* Output nodes: 2

"* Momentum: 0.50

"* Hidden layer learning: 0.15

"* Output layer learming: 0.30

"• Activation Functions: Sigmoidal (range [0,1]) at hidden and output layers.

The goal was to affirm that that the network could correctly verify a target individual. Test

results, representing 10 runs each for 3 targets, are shown in Table 4.5. The results show that the

network performed as expected and can verify individual targets using a standard backpropagation

network.

Table 4.5. Classification Accuracies for Single day verification of 3 target subjects

Data (day) 11 Hidden layer nodes 30 run average

day I vs day I 10 196.4%
day I vs day 1 20 96.9%

These results support the verification work being performed in Los Alamos National Laboratory

(25) which uses raw image data as inputs to a backpropagation network with a single hidden layer. The

Los Alamos Laboratory research uses a minimum of 100 images to train the network, with 10 percent

of the images representing the target to verify and 90 percent representing nontargets. Additionally,

their data was captured on a single day for each individual. Data captured in this manner yields good

results (Los Alamos had results as high as 99 percent for some individuals) but it does not allow for

daily changes in individuals and, therefore, does not represent the real world where images will have to

be captured on many days if the system is to be useable for verification. The multiple day day problem

is addressed in the next section.

4-9



4.3.2 Multiple Day Verification The accuracy for verification using data captured on a single

day is very good. However, it is believed that training on a single days data will not allow for verification

in a real environment where images will be gathered daily. This sections testing was designed to find

the problems of a multiple day system and propose and test solutions. The network used for testing

in this section is the same as that for single day verification, ie. single hidden layer backpropagation

network, but the difference is in the data sets used for training and testing. Data used in this section

was gathered over several days with multiple sittings of each target. The results of the testing are found

in Table 4.6.

Table 4.6. Classification Accuracies for Multiple day verification of 3 target subjects using raw image
data as inputs to a single hidden layer backpropagation network. All training sets obtained
a 100% classification accuracy during training.

Data (day) Hidden layer nodes 30 run average

day I vs day 1 10 97.0%
day I vs day 1 20 96.6%
day I vs day 1 40 95.3%
day I vs day 2 10 11.7%
day I vs day 2 20 15.0%
day I vs day 2 40 20.5%
day 1-2 vs 1-2 10 91.1%
day 1-2 vs 1-2 20 90.8%
day 1-2 vs 1-2 40 89.0%

day 1-2 vs 3 10 9.0%
day 1-2 vs 3 20 15.0%
day 1-2 vs 3 40 2.0%
day 1-3 vs 1-3 10 90.6%
day 1-3 vs 1-3 20 90.7%
day 1-3 vs 1-3 40 90.3%
day 1-3 vs 4 10 14.0%
day 1-3 vs 4 20 33.0%
day 1-3 vs 4 40 44.0%

4-10



Column one indicates which day(s) the training versus test sets were captured on. Column

three shows the classification accuracies for the various data sets and hidden node configurations. As

expected, the network performed poorly in the multiple day test, but it was proposed that increasing

the number of days in the training set (ie. more prototypes) would show an improvement. However, as

can be seen in the table, adding prototypes from several days provided no improvement over the single

day training. Therefore, a test was developed to determine why the network was not improving even

with the introduction of multiple days images into the training set.

For this test a training data set was created that conained target ainages from a single day only

and the network was trained. Then a test set was created by shifting these images I pixel at a time and

testing the net to determine how a shift in the image would effect the verification accuracy. Likewise,

the images were scaled to determine if scale was a problem. An original image with a shifted and

scaled version are shown in Figure 4.5 and the results of the testing are provided in Table 4.7. The

results of these test indicate that shifts of I pixel can be overcome by some network configurations

since the accuracy for a I pixel shift varied from 0 to 100%. However, if the shift is 2 pixels, or about

a 6.6% shift, then the network performs poorly. Likewise, a scale change of even 5 percent will cause

severe problems for the network.

Table 4.7. Classification accuracies of original (day 1) images versus scaled and shifted versions of
the same images. Original images were trained to 100% accuracy of the training set;
original image test set accuracies are shown in the table.

Test Set Classification Accuracy: 10 run average, 10 test images per run
Original Images 11 Shiftd I pixel Shifted 2 pixels Scaled 5%
99.0% 40.0% o00.0% 03.0%

4-11



Original Scaled Shifted
Image Image Image

Figure 4.5. Original inage and a scaled and shifted version of the same for testing the effects of scale
and shift on the multiple day verification networks

The question was then how do you compensate for the scale and shift problems? More prototypes

still seemed to be a piece of the solution but that alone was shown previously to offer little improvemenL

The proposed solution was to increase the number of days of training data plus increase the mixture of

target versus nontarget images in the taining set. This means that instead of using a data set with 20

percent of the images from the target and 80 percent nontarget, a new data set containing a 50/50 mix

would be created and tested. It was believed that this would allow the weights to update more evenly

for target and non target alike.

The networks were retrained and the results for 2 target subjects are shown in Table 4.8. As

can be seen in the table, training the network using data gathered over 9 days dramatically increased

the classification accuracy for multiple day test sets; in this case, the test sets consisted of data

gathered on days 10 and 11. Therefore, training on days I through 9 allowed the networks to correctly

verify target data from days 10 and 11 with a high degree of accuracy. Given the above results, the

solution for verification over multiple days, which had not been addressed in previous literature, is a

4-12



Table 4.8. Classification Accuracies for Multiple day verification using data sets with 50% target
images and 50% nontarget images. All training sets attained a 100% classification accuracy
during training.

Data (day) lHidden layer nodes 30 run average

day 1-4 vs 1-4 10 88.8%
day 1-4 vs 1-4 20 89.5%
day 1-4 vs 1-4 40 88.3%
day 1-4 vs 5 10 30.5%
day 1-4 vs 5 20 11.0%
day 1-4 vs 5 40 25.0%
day 1-9 vs 1-9 10 91.4%
day 1-9 vs 1-9 20 91.5%
day 1-9 vs 1-9 40 89.7%
day 1-9 vs 10 10 99.4%
day 1-9 vs 10 20 100.0%
day 1-9 vs 10 40 94.0%
day 1-9 vs 10-11 10 94.7%
day 1-9 vs 10-11 20 88.2%
day 1-9 vs; 10-11 40 86.5%

backpropagation network with a single hidden layer and a training set with an equal number of target

and nontarget data images collected over multiple days.

4.3.2.1 False Acceptance Testing This task was designed to test the false acceptance

rate for nontargets. In other words, what percentage of the time will the network identify a nontarget

as a target. The data for this test consisted of 90 images of nontargets, gathered over several days,

and they were tested against the networks a-,ined for day 1-9 data. Results of this testing are shown

in Table 4.9. The table shows that for any number of hidden nodes used the false acceptance was no

greater than 9.2 percent. As stated in the previous section, these results, and the verification results of

Table 4.8, indicate that a backpropagation network with a single hidden layer can be used successfully

for verification over multiple days.

4-13



Table 4.9. False acceptance testing of multiple day images of nontargets. Data was tested against
networks previously trained for multiple day verification. The False Acceptance Rate
indicates how often a nontarget was identified as a target, based on a 20 run average.

Data (day) -n Hidden layer nodes False Acceptance Rate
day 1-9 vs nontargets 10 6.9%
day 1-9 vs nontargets; 20 9.6%
day 1-9 vs nontargets 40 8.2%

4.3.3 Multiple Person Recognition This portion of the testing used the backpropagation

network once more to assess the ability of the network to classify multiple classes of face images. The

parameters for the network remained as above. An immediate disadvantage of using the larger class

networks was the training time. As a minimum, a 10 class problem with 40 hidden nodes required eight

hours on the Sun SPARCstations to train and as the number of classes increased so did the training time

to a maximum' time for these tests of 15 days for a 49 class problem with 250 hidden nodes. Results

of the testing for this section are shown in Table 4.10.

For single day, multiple class problems the network could learn the training set and perform

reasonable well on the test set accuracy, but when a second days data was added to the training and

test set the accuracy was again a problem. No further testing of multiple day, multiple class could be

performed to determine if additional prototypes would be useful because data for more than 2 days

only existed for 3 individuals, all other subjects were 2 days of data only.

'Tmining to 200K itertions, which took 13 days and the training data only learned to 55.5%. Estimtes of the time
required to complete the training on Sun SPARCstalons are 30 days.

4-14



Table 4.10. Classification Accuracies for Multiple Classes using raw image data (1024, 8-bit gray
scale values) as inputs to a single hidden layer backpropagation network. All training
sets attained 100% classification accuracy during training.

Classes R Hidden layer nodes Iterations Test Set Accuracy

10 10 10K 86.7%
10 20 10K 91.6%
10 30 10K 83.3%
31 31 30K 92.5%
31 62 50K 92.9%
31 93 50K 81.7%
49 50 100K 91.9%
49 100 looK 87.1%
49 150 200K 74.6%
49 250 200K 46.4%

4.4 Classification using raw data, Karhunen-LUkve transform features, and identity network

extracted features

For this task, multiple classes of data gathered over two days was tested in the neural networks

described previously and in the AFIT end-to-end system (developed by Runyon) which uses the

Karhunen-Lobve Transform (KLT) as developed by Suarez (36). The purpose of this task was to

compare the classification accuracy of a neural network using three different input features: raw image

data, KLT extracted features, and identity network extracted features. The number of input features

and hidden nodes used were determined from previous tests-these parameters gave the best results.

The data sets for these tasks are as follows:

"* Motion Segmented Data (MSD). This consisted of 230 images of 23 subjects (classes) captured

over two days with the motion segmentation system described in (13).

"* Hand Segmented Data (HSD). This data is composed of 600 images of 30 subjects captured over

two days, one sitting per day, with the system described in chapter 3.

4-15



The identity network features were extracted from the motion segmented data and the hand

segmented data and the reconstruction of images using these features is presented in Figure 4.6 for the

motion segmentation and Figure 4.4 for the hand segmentation. Based on the visible reconstruction

error, again refer to Figure 4.6, which was hypothesized to be important to some degree in face

recognition, the features extracted from the motion segmented data should not do as well as the hand

segmented data.

Reconstruction of Motion Segmented Data

Eu,,,
In 0 In 5K In 10K In 15K In 20K

Out 0 Out 5K Out 10K Out 15K Out 20K

Figure 4.6. Identity network input images versus reconstructed output images using Motion seg-
mented data. The images are shown at selected iterations of 0, 5000, 10000, 15000, and
20000. Although the identity network reduced the average MSE, the reconstruction of
this data is not recognizable to a human observer.

The test results are shown in Table 4.11. Classification accuracy for hand segmented, single day,

multiple classes is essentially equivalent for all types of inputs. However, using strict Karhunen-Lobve

transform features as inputs to a classification network yielded higher classification accuracies, by a

few percentage points, than did the identity network extracted feaures as inputs to the classifier. This

4-16



could be expected since the identity networks develop a distributed representation of the principal

components and not necessarily the most significant principal components (11, 5) as does the strict

KL transform. When using the motion segmented data, the Karhunen-Loave transform features were

clearly better to use as inputs to a classification network. When combining data captured from two

days, the results are again basically equivalent for the inputs used. Once more, however, the KLT

extracted features gave a higher classification accuracy when using the motion segmented data. These

tests clearly indicate that the KLT extracted features as inputs to a classification network provide the

best results. The motion segmented data most likely gave lower results for the KLT features because

the KLT is not shift or scale invariant and the motion segmented data is much more susceptable to these

variations.

4.5 Code Development

As stated in chapter 3, all code was developed using ANSI Standard C. The algorithms developed

as part of this research were tested using carefully developed test data files. Whenever possible, these

files were run on the NeuralGraphics (37) system and code developed for this research to insure proper

operation of the developed code.

4.6 Summary

This chapter presented the results of testing several different networks used for recognition or

verification of face images. Networks tested consisted of a back propagation network using the raw

data as inputs; a back propagation network using Karhunen-Lobve Transform coefficients, computed

from the raw data, as inputs; and a back propagation network using features extracted by an identity

network as inputs. As discussed in Chapter 2, these networks had not been tested against data gathered

4-17



Table 4.11. Classification Accuracies for raw image data versus Karhunen-Lobve transform extracted
features versus identity network extracted features as inputs to a back propagation classi-
fication network. All training sets attained 100% classification accuracy during training.
For this table, HSD is Hand Segmented Data and MSD is Motion Segmented Data

Classification Accuracies: Raw data vs KLT coefficients vs Identity network features as inputs

I Network Configuration
Data set Inputs Hidden Nodes Outputs (classes) Accuracy

1024 (raw data) 60 30 93.3%
HSD day 1 20 (KLT coeffs) 40 30 97.0%

40 (ID features) 40 30 93.3%

1024 60 30 93.3%
HSD dayl+2 20 40 30 95.0%

40 40 30 93.8%

1024 60 30 3.3%
HSD day I vs2 20 40 30 53.0%

1 40 40 30 5.3%

1024 60 23 37.0%
MSD dayl 20 40 23 76.0%

40 40 23 42.4%
1024 60 23 40.0%

MSD day 1+2 20 40 23 74.0%

40 40 23 41.0%

1024 60 23 10.4%
MSD daylvs2 20 40 23 34.0%

1 40 40 23 13.9%

over multiple days. As such, this was a primary focus of the testing during this effort. The resultq show

that all the networks perform poorly when training on data captured on a single day and testing on data

gathered on a different day. However, the most important result for this effort is that verification can be

accomplished over multiple days if the training set used contains data gathered over many days, in this

case 9 days was sufficient, and if the training set is composed of 50 percent target images and 50 percent

nontarget images. For this composition of training data, using a single hidden layer backpopagation

network, and the raw image data as inputs, the verification accuracy over multiple days was 94 percent

4-18



and the false acceptance for the same network was 6.5 percent This indicates that face verification

over multiple days can be performed with a neural network

4-19



V Conclusions

5.1 General

The purpose of this study was to investigate and implement a neural network for face verification

and classification. The objective was to develop a neural network based feature extractor and/or

classifier that can be used for authorized user verification in a realistic work environment. Specifically,

three networks were developed and tested: a back propagation network using the raw data as inputs;

a back propagation network using Karhunen-LoAve Transform coefficients, computed from the raw

data, as inputs; and a back propagation network using features extracted by an identity network as

inputs. The following sections present the conclusions. First, the multiple day problem conclusion is

presented, then the identity networks are discussed. This is followed by a discussion of the multiple

class recognition problem; finally, the comparison of neural network extracted features to the strict

Karhunen-Love Transform features is presented.

5.2 Multiple Day Verilication

The most significant conclusions for this research are based on the multiple day verification

results. Multiple day verification is a significant problem that had not been addressed previously in the

literature and the objective was to determine if a neural network could be used to solve the multiple

day verification problem.

The solution to the multiple day verification problem, supported by test results of Chapter 4,

is a single hidden layer backpropagation network that uses raw image data for inputs. When these

networks were trained as two class networks accuracies of 100 percent were obtained for the multiple

day data. It was also found that training set composition is imporant; the training data that provided

5-1



the best results was a data set composed of 50 percent target individual, captured over 9 days, and 50

percent nontarget induviduals. Using less than 9 days worth of data proved to dramatically decrease

the verification accuracy of the network. This is most likely due to the shift and scale sensitivity of

these networks, also identified during testing. Gathering 9 days of images, ie. multiple prototypes,

allowed the network to learn the shifted and scaled versions of the target which dramatically increased

the verification accuracies. Again, these results are significant because the multiple day problem was

not addressed in previous literature.

5.3 Identity Networks

The objective for this portion of the research was to develop and test an identity network for use

as a feature extractor/input layer to a classifier. The data compression and feature extraction capabilities

of these networks performed as expected. When using the identity network extracted features as inputs

to a classifier, the features were acceptable for classification of data that had been gathered on a single

day; 10 classes could be classified to a 97.5 percent accuracy. Increasing the class size had some effect

on the classification accuracy using the identity network extracted features, however, the accuracy for

30 classes was 96.7 percent and for 49 classes it was 92.8 percent These results are very respectable

given the larger class sizes. However, the identity networks as feature extrctors did not perform

well when using data collected over multiple days. In this case, the maximum classification accuracy

using multiple day data was 20.0 percent for a 10 class data set which indicates that the generalization

capabilities of the identity networks over multiple days is very poor. As such, these networks would

not be useful for feature extractors in a realistic environment

5-2



5.4 Multiple Class Recognition

The multiple class recognition problem was addressed because many of the results in the literature

deal with small numbers of classes and constrained data sets. The objective was to determine how well

the networks performed when the data sets were increased in size, numbers of classes, and gathered

over multiple days.

The classification accuracy using a single hidden layer backpropagation network with raw image

data as inputs performed well on single day data. Results of classification for 310 images consisting of

31 classes, 10 face images per class, obtained a 92.9 percent classification accuracy on the single day

data. Classification using two days of data consisting of 620 images of 31 classes, 10 images per class

per day, also performed well for this network which obtained a classification accuracy of 93.3 percent.

The drawback of this network, when using Sun workstations, is the amount of training time required.

As the number of classes and hidden layer nodes increases the training time increases to a point of

being impractical for real world applications to recognition. For example, a network using 800 images

of 49 classes and a hidden layer of 250 nodes required over 30 days to train on the Sun Workstations.

However, using 31 classes and 62 hidden nodes the network can be trainied id approximately 24 hours

on Sun Workstations and this acceptable for realistic applications.

5.5 Neural Network Extracted Features versus KLT

The objective for this portion of the research was to compare the classification results of networks

using raw data as inputs, identity network extracted features as inputs, or strict Karhunen-Lobve

Transform (KLT) extracted features as inputs. Data for these comparsons consisted of 300 images

representing 30 classes for single day captured data and 600 images of 30 classes for two day captured

data. The testing in this area showed that using the KLT extracted features as inputs to a classification

5-3



network allowed for classification accuracies of 97% on single day captured data versus 93.3% for

both the identity network extracted features and the raw data. When using the two day gathered datam

the KLT features provided dramatic increases in classification accuracy over the single day data; 53%

for the KLT extracted features versus 5.3% for the identity network extracted features and 3.3% for

the raw data as inputs. The bottom line is that the neural networks using raw data or identity network

extracted data as inputs to a classification network had accuracies as good as networks that used strict

KLT coefficients as inputs.

5-4



Appendix A. Source Code

This appendix contains the source code for this research effort. The original backpropagation

code and multilaye, perceptron code was written by Dr. (Capt) Dennis Ruck (29) and modified as

it became necessary. The modifications included porting the code on Sun workstations, adding a

symmetrical sigmoid update rule, implementing an identity network, and implementing a four layer

network, etc. The following code is included in this appendix:

"* Makefile The Makefile was setup to allow for variations in the executable files by setting or

not setting various flags; the flags are self explanatory. Understanding the Makefile is key to

understanding the code in this appendix.

"* dkmain.c This is the main routine and contains many options depending on the particular flags

defined.

"* backpropx.c This is the backpropagation learning algorithm. This code was modified to include

a symmetrical sigmoid updata rule as well as the standard sigmoid.

"* display.c This code was developed to display images on the Sun workstation displays. It was

specifically designed to view the identity network training while the training was in progress.

"* dkiox.c This code contains the input and output routines for reading weight files, data files, etc.

"* ps.c, psx.c, utils.e This code contains the utility routines necessary to gather the data in a

meangful manner. The routines to compute the network, error statistics, etc. awe contained in

this code.

"* macros.h, g•jobals.h, globals..h These are the '.h' files, the difference between globals.h and

globals.h is that globals.h is included in all files external to the main routine, dkmain.c.

A-1



* makedata.c This code is used to take the 32x32 pixel, & bit gray scale, ascii format image files

and create the necessary data files for use in the main routine.

A. I Makfde
# Makefile
# Created ty Dennis Krepp June 1992
HOSTzgrimm
HOME=/cub5/dkrepp
NEXTCFLAGS = -DNEXT -bsd
SUN_CFLAGS = -f68881 -DSUN
SUN4_CFLAGS = -bsd
ATHENACFLAGS = -ffpa -DSUN
DECCFLAGS = -DDEC
# The following flags apply primarily to the mfn.c program:
# -DNPX causes data to be partitioned according to training fraction input
# -DBACKPROP causes the Back Propagation training rule to be used
# (note: if training, this must be defined unless you
# code up another trainning rule )
# -DTRN causes the weights to be saved and the program to train a network.
# -DTRNCOTT causes the net to train the second layer of a Cottrell net
# -DNOTRN use weight file weights for testing the network.
# -DLINEAROUT causes a network with linear outputs (Cybenko net)
# -DSIGMOID causes a network with sigmoidal output units
# -DSYISIGMOID causes network with symmetrical sigmoid outputs
# _DINP_SYM forces input layer to have a sym-signoid output
# -DSCALE_ETA causes eta to be scaled by the fan-in for each unit
# -DNOSCALEETA causes a fixed eta to be used for each weight
# -DMRUNS use to perform multiple runs on database
# -DNODEOUT prints output node values for sampled iterations of input
# -DRANDOM causes random grabbing of data vectors for use in training
# -DIDNET causes the net to work as an autoassociator net
# (must define SYM-SIGMOID with IDNET)
# -DRESULTS causes outputs to be printed to files vs stdout
# -DMLP multilayer perceptron flag for output and setup files
# -DVIEW view the input and output images (IDNET must be defined also)
# -DOJAID makes an idnet function with linear outputs as suggested by Oja
# -DWTS forces a weight file to be saved after each output interval
SIGNOIDCFLAGS = -g -DNODEBUG -DBACKPROP -DRANDOM -DSIGMOID -DMPX \

-DNOSCALEETA -DNOTRN -I.
IDNETCFLAGS = -g -DNODEBUG -DBACKPROP -DRANDOM -DSYMSIGMOID -DIDNET \

-DNOSCALE_ETA -DTRN -DMPX -I.
CYBENKO_CFLAGS = -g -DNODEBUG -DBACKPROP -DRANDOM -DLINEAROUT -DNPX \

-DSCALE_ETA -DTRN -I.
COTTRELLCFLAGS = -g -DNODEBUG -DBACKPROP -DRANDOM -DSYMSIGMOID -DMPX \

-DNOSCALEETA -DTRNCOTT -I.
BIN = $(HOME)/bin/$(HOST)
#BIN=./
BACKPROP_OBJ = backpropx. c
MFNCODE = $(BACKPROPOBJ) dkmain.c ps.c dkiox.c utils.c psx.c nrutil.c
CC = CC
SYSLIB = -lm
alp: Makefile globals_.h macros.h macros.h nrutil.h malloc.h $ (MFN_CODE)
S (CC) $ (SIGMOIDCFLAGS) -DMLP -o mlp $ (MFN_CODE) $ (SYSLIB)
echo 'Make mlp successfull! I
idnet: Makefile globals_. h macros.h macros. h nrutil. h malloc. h $ (MMFlCODE)
$ (CC) $ (IDNETCFLAGS) -o idnet $ (MFNCODE) $ (SYSLIB)
echo "Make idnet successfull. *

cybenko: Makeflle globals_.h macros.h macros.h nrutil.h malloc.h $(NFNLCODE)
$(C) $ (CYBENKOCFLAGS) -o cybenko $ (WNCODE) \

A-2



$ (SYSJLIB)
echo *Make cybenko successfull!

cottrell: Makefile globals_.h macros.h macros.h nrutil.h malloc.h $(MFN_CODE)
$(CC) $(COTTRELLCFLAGS) -o cottrell $(MFNCODE) \
$ (SYSLIB)
echo 'Make cottrell successfull!

statnorm: Makefile stat_norm.c
$(CC) -g -I -o stat_norm stat_norm.c $(SYS_LIB)
echo 'Make stat_norm successfull!
NG2ruck: Makefile NG2ruck.c
$(CC) -g -I -o NG2ruck NG2ruck.c $(SYSLIB)
echo 'Make NG2ruck successfull!

clean: ;rm -f *.o core

A.2 dkmain.

dkmain.c: Multilayer Perception Pogram

Written by: Dennis W. Ruck (DS-90), AFIT/ENG
Modified By: Dennis L. Krpp (GE-92D), AFITIENG
Modifications:

1. Modified to allow different learning rates (eta's)
for each layer of weights.

2. Modified to run as an Identity (autoassociator) net
3. Modified to work as a Cottrell net
4. Modified to use a symmetrical sioid if desired
5. Modified to print output node values to screen if desired
6. Modified to print the imaes to the screen if using the
-DIDNET -DVIEW options
7. Modified to work as a 4-layer classification net, which a

slight twist to the Cotrell net in that the clsusification
net is a two-layer
backprop versus a one layer.
8. Modified the mulple runs option of the code for SUNs

#include <stdio.h>
ffinclude <sigaal.h>
#include <ctype.h>

#ifndef NEXT
#include <malloc.h>
#else
extem char * mallocO;

#endif

#ifdef RESULTS
#define RUNFILE run-file
#else
#define RUNFILE stdout
#endif

#ifdef MLP
#define PREFIX "mlp"
#endif

#ifdef IDNET
#define PREFIX , idnet
#define SIZE 32 I this is the image size (ic. 3232) 4
#endif

#ifdef TRNCOTF
#define PREFIX "cottrell
#endif

#ifdef TRNKREPP
#define PREFIX "dlk"

A-3



#ifdef LINEAROUT
#define PREFIX Icybenko,

#ifdef NODE-OUT
#define SHOW-OUTPUTS out-file
#endif

ffinclude <macroh>
#include <globaisli>

imt *ivector();
double *dvectogO;
double gausianO;
char *get-okeno;
char *make-file0l;
void menuO;
void display-inputO;
void display..outputo;
double ones..nonna]ize;

static char stop..name[J-stop...file. dat';
FILE *setup;
char daLtcmp!201;
char wts-temp[201;
char wts-iilename[20J;

main (aagc, argv)
imt argc;
char *argvlJ;

sawuc sigveC ivec;
char command[80J;

#ifdef MRUNS
#define SEEDNAME Iseeds. dat.

char *mnznroot, swts..oot, *zoo..name,
int staminumber, end-number,
FILE *seed-Jile;
char zoo-command1256J;
char *rnmn.name;
char temp[2OJ;
imt fnum;

FILE *rnmnlile;
char *wtsnaM, *dat-name;
hit tng..vector, sample;
double eff, acc, tst.=r, tstmac;
FILE *stopfhle;
FILE *out-file;
FILE :plot-file;
FILE .mdneL~file;

char *SETUP..LFIL *NODELFILEF *PLOLrFILE, *RESULTS.FILE;
int ij, kdargtx m;

I**** Crate the fil strings ********4

SETUP..FIE - make-file( *setup* PREFIX);
NODEAFLE - make.Aile( PREFIX" nodes );
PLOT..FILE w make-ille( PREFIX, 'plot );
RESULTS..FIE - make-file( PREFIX., resul1ts );

I***** TeM user what type this progran is ****
Thi can be added to the output file later
if necessary

#Wdef RESULTS
RUN-FILE = fopen(RESULTS.M.FE. W);

A-4



fendif
Sffifef MPX

fprintf(RUN..FILEJP nfn: MPX flag defined. \n");

#ifdcf IDNET
fprintf(RUN-MLEImfn: IDIIE flag defined.\n;

#endif
#ifdef HOOX
fprintf(RUN.FILE,Imfn: HOOX flag defined. \n");

#endi
Widef BACKPROP
fprintf(RUN.FILE"mifn: BACKPROP flag defined. Wni;

#endif
#ifdef LINEAROUT
fprintf(RUNML1IE,"mfn: LINEAROUT flag defined. Wn);

#endif
ifdef SIUMOID
fprintf(RUN..FILE.nIfn: SIGNOID flag defined. \n");

#eumi
#ifdef SYMSIGMOID
fprintf(RUN.FILE.Imfn: 5Th_SIGMOID flag deflned.\nli;

tlendif
#ifdef RANDOM

fpr~itf(RUN..LFL,*mfn: RANDOM flag defined. Wn);

fprintf(RUN FILE Imfn: RANDOM flag NOT defined. \n );
4#endif
#ifdef MRUNS

fprintf(RUN..FILE,"mfn: MRUNS flag defined. \n");
ttendif
#ifdef SCALLETA

fPrintf(RUN F1LEZ mfn: SCALE_ETA flag defined. \n");
ttendif
ffifdef TRNCOTr

fprintf(RUN.YILE.Imfn: TRNCOTT flag defined. \n");
#Cndff
#ifdef TRNKREPP
fprintf(RUN..FJLEmfn: TRNKREPP flag defined. Wn);
#endif

I***** Open thee setup file *.**d
ff ((setup - fopen(SETLJRFILE, I r1)) - NULL)
I
printf(II can't open the input file');
exit(-I);

I*s*Read setup file for net-type ****4
fscanf(sewp. %d* &neLtype);
fSkip =setup);

/***** Reading setup file ****4
fscanf(setup* %d, &initialseed);
ftkip.Jn~eu)

fscanf~setup, %d &par-seed);
fSkipiinesetu )
fscanf(setup* d, &trn~seed);
fskip.JneSetu" C;

/*s.** Gie fileame to save weights to ****d
fpftF ts:t1c p,2 0, setup);
j=&0
while(!~sspaCe(wtsaempf i])) i++;
wts.ZmupfiJ-I'\O0';

wtname - wts..ep

I***** Reading setup file ****4
fscanf(setup. %d,1 &amaxi~ter ms);
fskip.Jlne(setup ;
fscanf(setup, a V %d %d %d ,&nurn.inputs,&hide..on&hide-wo,&nun~m..puts);

ft iesetup)
fir..hst - Ivct(um.Jnputs- I);

A-5



mean - dvector(O~nwninputs- 1);
sd -dvector(Onu.nwaputs- 1);
input-mask .dvectW(Onurn-inputs- 1);

/***** Got filename to mad data from ****4
slwdpji setup);)

i M0&
while(fisspace(da~templil)) i++;

anae- daLtemp;

Read setup file **
fscanf~setuIt%d, &utput-interval);

fscanfl(setupRLFT ea.u)
SE7&eta-iln2)

fscanif(setup, M&LSMT, &alpa)
fskipiine(sesu);
ftcanf(setup~, &baacH..Ize)

fscanf(setup, I ;%&. &normsiye);
fskip-ime(setup);

fscanf(setup, ;ad %d". &M-tactnme,&n~ubr) siin~eu)

(** Clos th setup); *

fclose(setp);

#ifdef IDUNE

#endif

1* fpnntuf(RNME "\n-Utsin dfaue n%.;nmnus anm)
Iumoopiunuinamnputs) tis~J-;

/***** READ THE DATA ************

/* adnat( dRnm );NFM 1*\ fUncion foaund in dkso.c *4 -nus d-ae
Wdpri mntf( uN..ftLE, \nid -etr red.I;.vcrs;fuhsdu)

MfefRESULTFSstpfkstpnw d")

fClose (RUNY-iL);

#ifdef MRUNS

if ((seedlfile a fopen(SEEDNAME, 0r") NULL)

prmntf("I can't open the seed file");

A-6



IoopostarLnumber) fscanfseed-W 0e %d %d W., &inkiaI..sced.
&pft etwed, &imjeed)

/*MukILpkREINS loop *4
foi(fnwn = stan..umber, fnwn<end.nwnber; fnwn++){

itenaions - 0;

I.. Cremte the lie namnes *4
A* spnntf~tcmp "fsfd~s~s". PREFIX fnwn% .. " RUWN);

mnhname- = tcmp;'V
sprintf(temp. ltstdtsts',PREFIX, fnum. ... WTS.);
wts..name- temp;

1* CREATEJLFE( ,unJfike nan..nanmm. "=WM

fscanf( weed-file, - %d %d %d-, &initial-seed, &part-seed, &ZflLseed)
Sendif

Iniiliw/read the wehighs and thresholds
-calns utils.c->gusn

#ifdef TRN
srand43( nuala-ed);
loopi(num..staaes) xbat[iJ gausian( 0.0, 1.0)
kLmpx-xfeK);

Oenclif

#ifdef NOTRN
read-wt(wts-name);

ffifdef TRNCOTT
srand4g( initial-seed);
,cad..cohreILwts(wts-name);

Ohdef TRNKREPP
sanuxl( initialseed)

redrppwt~wtsname);
#endif

loopK(Lyerfk]-.nnout-puts)

lIoopj(Laye~kJ-.nunminputs)

LayerfkJ-.*wo%.][idlh - Layefk]-.w.jJ[ij;
Laerk-.dw1j WJ 0.0;

Layerfkj--.tbetLold[ii = Layer kI--othetali];
Layedki-.dahotail - .=

I.Panltlon th dosa into training and testin sets *4
Cifef MPX
pastiton( trniac put-~seed)

#ifdeflDNET
Jd4Mntidon (pan-wed);

Mofdef NOTRN
I..... Norannaidon of Doata***
& No Normsaliuion.
1: Gaussian Normaairaoe,.
2:- Norman rto wrang , (I 1

A-7



Seka~ Nonnalization Qfcrion in
setup file

Switch (norm..type)4
cue 0: bwak;
cue 1: gwssian-noindaizn0;

case 2: gaussian-ionnalizc;
max..value = oaes-noumaiie;

defail: pdntf(Invalid selection.\nl);
exit (- 1);
brnak;

#ifdef NOTRN
/** Nonna&Uz &ll data using previously generaWe meantsd *4
Ioopi(num..vectors)4

Iop(nxun~inpuus){
db.Jn~iJUJ - (dbjin[iljjJ-mean~jJYgIdI;

kidef IDNEr
A now divide all data by the max..value 4
prit(I\nmax...value - %f I, iax.value);
if (max.vahae #60.0)

Loopi(nuin.vectors)
loopj num..inputs)
db..znfiJUJ (dban[iJ1jlnmx..value);

Sendif

#ifdef RESULTS
RUN.FILE = fopen(RESULTS..FILE, *a,);

#ifdef IDNET
loopij(num..vectors ternp.outputs)

WMi)ut~ljI - db:out~ijOi;
loopij~nwn-vectoms nwn.utpus)

t(UN-.FILE. I\nNoriualized IDNET output database initialized\nl);
e** nd IDNEF Mfetf* 4

I.Print headr orRUN file *4

fkid(UN SIE.I ection seed (initial-seed): un
Db Partition seed (part-sjeed): un
Training Vector Selection seed(trn..seed): t~l

inidýsed uiseed ' tru-seed);
fpn(UN .IEWeights file: Wsn",wts..name);

fjit(RUN -LENetwork Size: %d-%d-%d-%d\n,.
swusnputs. bide..ome, bide-two, nunoutputs)

WWnt(RUNY.FLE. Source database ts\nV,dE..nune)
(jwint(RUN.FLE,*Training Rate (eta-in): gn

Training Rate (eta...out): gn
Training Rate (etajHljI2): gn
Momentum (alpha): tg\n\
Batch Size: %d\nl,etaineua.out, aa.Hl-H2, alhabatcbsize);
fpnntf(RUN..FLEL Features Used: )

fwn(RUN. "EAll Features in %s. \n'. dM.nune);
fwn(UN..FLE,*\nl);
~wnfRUN.FILE, IFraction vectors assigned to training: tg\n*,tmrn.fa);
irs(RUN .FILENormalization: Wdn'.noan.Zyp);
pif(UN FqILIF \n');

stnts 'bef ksocTRAIN);

A-8



UaW &bLewr, &t mcc TEST);,
fpdnzfRUN..FILE,1: t6d, ERR: %6.4e, ACC: %6.4e, TSERR: %6.4e, TSACC: %6.4eWn~keradoas,

err. a, crr at-= I)

P ; ýle*%6 1%.4e%6.4e %6.4e %6.4e \n.ieraioMs
err. mc, tst-rr. tst-acc)

fclose(pIlo~le);

#ifdef RESULTS
fclose(RUNSELE);

#ifdef NOMR
ffifdef IDNET

idne~fle = fopen(Im~p.idnet .dat1 'w');

kbndinetile., * d\ntd\n ,Layer[I J-.unwnoutpufts Wcrp-outpu); loopj(aum..VeCtors)
loopknwninputs) Layednct-type- II-iXfkJ - db-inhjl~k;
cwnpute-ouputO;
forwt(kidnet.fle, I%d 1.j);

W tl~2 % f 1,id..outfjJ~kJ)

forklf~kinet~le, I )

lilse(klnet-file);

exit(-1);
#endif

I.. training loop *4

finktaWe trnjeed snote, STATE-SIZE)

#ifndeNOTRtN
savc..wts( wis.nau,- dat-narne);

I. sweeps loop 4
IooPi( (nuxitermionsmm.rn>.1

/.. update loop *4
Ioopj(nmunun) {

Afdef RANDOM
targt - tuniisrandomo%mamjrnjl;

tant=tmnHst~itentdoos%num tnl;

loopk(manmowputs) D-outiki - db..outftng..vectorj(kJ;
I... coupue the outputs*

Pi same if IDNE~dfid*
If ((kuaton % (iutx IO.O*ouVlujnWrVal)) - 0)

displayizaput tng..vectmo .ax.value, SUE);
displayx.utput( max-value, SIZE);

ffidef NODE-OUT

A-9



SHOW-OUTPUTS - fopen(ODL-FIL. -a-);

maxiumfl~ods. hiska bechnae
to ali node by cha~lthe "ir statement
below for the vab sample"

if (Qeralions % (intXl-0.ouputjniem)) - 0)4

if ( -- >10)
else

sample - num-ouiputs;

fprltf(SHOW..OUTPUTS, Iteration td: Random vector td: \n", ketraflons, waset);

fpuin~tf(SHOW..OUTPUTrS, Desired Outputs:
loopk(sample) kprntf(SHOW..OUTPUTS, %4. .3 f Ab~outftng.vecwoJlk]);

ifdef IDNET
fprinzf(SHOW..OUTPUTS, *\n IDNET Outputs :1);
loopk(sample) foritf(SHOW..OUTPUTS, -%4 . 3 f .Layer[OI--Y(k]);
#else
fpuintf(SHOW..OUTPUTS, I\n Actual Outputs :1
loopk(saznple) fouintf(SHOW-DUTPUTS, * 4 .3 f. Layer[0l-i+Y~kj);
#endi
ffprntf(SHOW..OUTPUTS, I\n\ri);

fclose(SHOW-OUTPUTS);

#enifI..***END NODF.OUT **.**s***

ifdef BACKPROP
backprop(alpha);

Meration++;

lf~kerations2:max.iterations) break;

ifdef RESULTS
RUNFILE - fopen(RESULTS FI1LZ a,);

if((iteralions % OuWpujnterval) -=0)

'stWs(&eu,&AccTRAIN);
stW&Iste &Macc TEST);

fprinz(RUN..FLF,"1: t6d, ERR: t6.4e, ACC: t6.4e, TSERR: t6.4e, TSACC: t6.4e\n*. reions, CMT
aC, er tst-MC. Wc);

*%t"= q6d %6.4e t6.4e t6.4e t6.4e \n',ieruioas,
err.W, at-= WerUtLaBC)

fclose(plot-file);

#ifdef RESULTS
fclwRUN-FURE);
fendif

ifndet NOTRN
smvwis( wtuname dat-none;

/* Wrde whuwto lleafter 'ewepoch 4
#ifdef W73
sprinif(wt~fleomie, tstd*, wts..name ,(iMentkic a dlhsmpuintmrl));
spwinafconunmd, 8s t tosto cp', wtu..mme wws-knieam);

A-10



Sffdef RESULTS
fcloueRUNJZILE);

Wkeriwkmi tatk ) break;

#ifodeNOTRN
savc..wta( wis-name do-.nowe

#idef RESULTS
RUN-FILE - fopen(RESULTS.FILE, a,);

Afdef EDNET I'.* Display ls imahge *4
display.inpWt tng..vector max..value, SIZE);

displaytsnax..vahae, SIZE);

stu &e &mcc. TRAIN);
stmW &M~er Mstac TEST);

fpdinlf(RUN.FIlE,'1: t6d, ERR: %6.4e, AMC %6.4e, TSERR: %6.4e, TSACC: %6.4e\n*,kerviotms
err acc aLef, saucc );

-p e -6'd164 %6.4e %6.4e %6.4e \r*kcileS~oms

fclose(PIo~fle);

fifdef RESULTS

fcose(RUN-FILE);

I** write hkkden node outpu to a file for milp avining *4
ffdefIDMET

idnecfiMe m fopen(1ap-.idnet. dat*, W);
fpdand(idwt file, %td\ntd\n*, I 41JI-mnwunouqxstpusstarcuputs); Ioopj(num..vccwr)

Lpk~um~n~us) ayeneutype- I -- XjkJ - dbinUllkJ;

td *.J);

pus
%If II.AyrillA-il)



Widef MRUNS
) /** end multiple runes loop *4

&MMf

Wdef VIEW
systemK~r3 *.red');
system( *rm temp.*");
system~rm tesupINr);
system(rm tenpOuTI);
system(Orm *.rlel);

#eWf

#idef RESULTS
iclose(RUN..FIL);

I

A.3 backpropxmc

and uses the Layf) amay.

Dennis W. Ruck, DS-90D

ffinclude <Ndidob>
#nciude <uM1thb>

#inchade <macros>
ftclude <globais1>

void compuse..dela;
void compute~desx();
void backprop;
void backpropxO;

void, Coiputecideb()

c7gn ..e&b: computes the delw for a network. Uses neuype
asSo iput to dauennle what layas to compute for.

switch (neutype)
cue :
cue 2:
cue 3: coapute-idesx0;

break;
defaik: fpritfs~wex comnute-.dels: can't cowpute deltas for\

net-.type z Id.\n*,OeLtYPe);
exit(- I);

) ..end coqpute~delsO *

void coinpuwe..dex()

'double sum;

A-12



int LJ. k:

loopi(LayedOJ-'num..outputs)

#fldef LINEAROUT
LgaefOj-'delliI - (D-ogutfi]-Laye[OJ-.Y[iD)*LAYerOI-mukiJ;

#ecdif

#ifdef OJAJD
LfyertOJ-idelli) - (D-outfil-L~yefOJ-.YliJ)*LAyedOl-maKfiJ;

#enddf

#ifdef SYMSIGMOID
LAyedOl-~deffiJ - (0.5)*(1.O - (L yerOJ-4Y~iJ*Layer[OI-YiYW))*

#endif (DotiI-LayerfOJ--*Y~i e~)ms~]

#ifdef SIGMOID
l~yr(1--deqilw aye4OJ--Y~iJ*(l.O-Lyaye[OJ--Y[iJ)*

#enm Dif i-ae~-~l)Lydlm~l

fof~k=1~k<neL-ypek++)

loopj(L~yerfkJ-.num-output)

sum = 0.0,
loopk(Lyerfk-1J-.onunmut s)
suil- Layefk- IFDelaJ*ycrfk-1I-.wo][iJ;

#ifdef SYMSIGMOID
LAyed~kl-*delUJ = (035)*(1.O - (LayefkJ-..YU]*Layer~k]-YUI)) *

#Cami sum*Laye~k]-maskjJ;
#ifdef OJAID

L~aye~kj-.del~jJ - (0.5)*(1.O - (Layerjk]-.YU*LAyerfkj--YUj1)) *
#c fSuM*Layerfkj-.makljj;

#ifdef SIGMOID
LAYedki-~dt1U1 - yek-j)(.Laej.Y)

#ifdef LINEAOUT
Layerfkl-.delUJ - Layerfkj-.YUJ*(I.O-Laye~kI-.YW))

sum*LAyjeifkJ-.mskfjJ;

)I.end compuc-delsO *4

void backprop(alpha)
double alpha;

backpop:, I~mplm t the backprp weight update rule.

IPRO l neuype

uwkn~ ype)t

cue 2:
cue 3: backpropx(alpha);

break;
default :fjurntfsetderrbackprop: Illegal net..type Wdn", net-type);

exk(- 1);

void backpropx(aiph)
double alpha

A-13



backprtopx: Backprop update for a muktilayer net.

IPUIS. Layeuf], D..out

OUfl?7TS: L~Ayerf)

double tW, Mleta;
double lema Iapba
int LjI k, epoch;

lapha - alpha;

batch-cnt+.;

compute-.deISO;

/41* Update all layers *4

#ifdef TRNCOTr
loopk((netaypc - 1))
#endif
#ifdef TRNKREPP
1oopk((ne~type - 1))

#ifdef TRN
loopk(nezype)
#enf

#ifdef SCALLEMA
lets - LAyeftk]-ica/~lobleXAyerfkI-.num-inputs);

#endif

#ifdef NOSCALLETA
kfts - LAyerfkJ-.cia

lifdef IDNET
eoh- (itcrations/nmmtru);

if(pobQ && (k - 0))
W=Oa- oatX I+cepocb);

if((cpoch > 25) && (k - 0))
leta - (ieta/iD0.);

A* illMlerutions S nurntm) um 0)
4pdaon epoch - 4 eM - tn*epoch~kt&);

/*s Coinpute the change in the weights *4
loopj(LA"cIk-.nwu.outputs)

~if(LayerfkI-4mukI i-OFF) continue;
loopi(Laye~kJ-ouninnputs)
f Layefkj-.dw~iJol +- IAycffkl-.delIjJ*Iayerkj-.XjiJ;

"LIffC-dtlhetaij] +- Lakyertkl-.delII;

1*1Update the wevights If indicated *4
iftbatch..crn-atckhize)
4lopj(AyedkJ-anwnoutputs)

= K(Layea k lJ-.k~ OFF) conianue;
lolLayek-.numinoputs)

A-14



t W di -2u

Layerfl-.dw[iJUJ - 0.0;

)Icam - Laye~]teal

L~ayer! kJ-&,ea~oldUJ - tTheMa
L~ayerfkJ-.dbeMaU) - 0O0;

)I*end weight update *4

)I*end layer update *4

if(batch..cnt--batch.uize) batch-cnt - 0.

) /** end backpaopO *4

A.4 dkioxxc

dkiox.c:- Utility Functions to suppoit perceptro IA)

Wduen by: Dennis W. Ruck, DS-90D API TIENG
Modified by: Dennis L Krepp. GE-92D AFIVTING
Mod ifiations:

1. mad~Am modife to save mnult to Aiss
2. ,cad.wts onodified fora Cottiell net

#include <stdioki>
#include <strings.h>
#include <math~h>

#include Imacros.h,
#include gl1obals .h

Elifdef RESULT
#define RUN-FILE stdout
#else
#define RUN-.FILE stdout
#endif

double drand48Q;
double gatassian(O;
char * ve-tokenO;
double **dmatrlxO;
at *i-Vec~oO

I.* Funcdomz Epoted *4
void redmO);
void saLwtso;
void ftadxtoumeLwtsO;
void save..wtso;
void smavedo;
void makeinebO;
void savei.xfmO;

I****** VOID SAVE..WTSs.73s***************s
save..wts uses the following globa input vaaiables:

numnaputs. hide..one hidetwo, num..output
Iteratons, max aloe
Inkila~seed (used in setting weight)
piftjee4 mUJCed

A-I5



ftrlst rglif

void sac*wts( tsna me, *datnanie )

char *temp, *tha;
imt i -0;

A* pdantf~kpiox.c- save..wts \n"),4

CREATE-YILE( wts, wtsimnae. Isave..yts)

fprintf( wts. IWISTYPE: td\n', wtstype );

fpn~ntf(wts, %d - Number inputs\nl,num.Jnputs);
fjritf( wts, %d -- Number Hi nodes\n*,hide.on);

fixintf( wts, I%d -- Number H2 nodes \n , hide-two );
0 .ntfwts, I%d -- Number outputs\n",nurn-outputs);
=vnntf( wts, I%d -- Number iterations \nI,iterations );

fprintf( wtsI %d -- Initial wts see~n",initial-seed);

I*sNow save the weights .*4
I**Use act type **4

Type
0 :Single perceptron
I : OneIlayer
2 :Two layer
3 :Throe lyer

/*** Copy weights to the state amry **4
switch(neLtype) f

caseO0: fprinz(sderr~save_wts: Illegal net-..type %d'\n*,ne~type);
exit (- 1);
break;

caselI:
case 2:
case 3: nipxk.xfero;

break;
defauh: fprintffstderr~save_w'ts: Illegal net-.type %d!\nI,ne~type);

exit (-I1);
break;

)op~unsae)frn(ws en1 hti

I* * SA ve additional wts info for ne wer wts files *4
if( wts-type - WTS-.TYPE-)

fpnfwts,-%d -- Partition seed\ n",pan-seed)
fIdUw1s, %d - - Training seed\n', trn.eed );
d~it(wU6 Its -- Source database\nl,daLanune);
fpd ts, O~FEA¶¶JRES: 1);
lolnwn.Jnputs) fprintf( wts, I %d\ n , ftrJilsfi)

ws *%d -- Normalization method\n*,nornmaype);
--, % Normalization max..yalue\n,,(flost)max~vahae);

f~rndwis, *te -- Fraction assigned to training\n*,Uftrn.f);
boi.umilnputs)

4
fpdind( wts,otf -- mean [%dI Wn,(float) mnean~i], %)

A-16



fprintf( wts, *f -sd %d I n (float) Of i],i);

fcose (wts);

11* end save-wts 4

void read..wts( wts..name)
char *wts..name;

cha *temp. *tn first;

double junk;

I*pintft["dkiox.c- read.wts \n");4

/*** Open Mhe wts file **4
OPEN.FILE wts, wts-name, *readyts)

/** Check if the wts-type indicator is present *4
if( (first=fgetc(wts)) i 'W )

I*No wts-type indicator present *4
I*Atempt to push it back onto the input stream *4

if( ungetc(first. wts) = EOF ) I
fprintf(stderr. read-wts: can It return character to input stream. \n*);
exit (-I1);

wts-type = WTS.TYPE..O;

/* * wts-type indicator present *4
tkn = jt-oken(wts); I** getting remainder of WfSSJYPE. label *4

fsanf ts Id1,&wts-type)
fskipiine(wts);

I~*Read the data **4
fscanf( wts, I W, &numinputs)
fskip..line(wts);
fscanf( wts, I Wd, &hide..one)
fskipiine(wts);
fscanf( wts, I %d, &hide..two)
fskip-line(wts);
fscanf( wts, I%d, &num-outputs)
fskipiline(wts);
fscanf( wts, %d,&iteiations)
fskipiline(wts);
fscanf( wts, I W, &finiial-seed)
fskipiline(wts);

printf(Inum...inputs = %d \nhide-one =%d\nhide-two =dn

num~outputs = %d\niterations = Wdninitiai-seed =dn

wts~type = Wdn, 1.um..inputs, hide-.one, hide-two. num..outputs, iterations,
initial-seed, wts-type );

I*** Now get teweights**4
/** First determine net type *4

Type
0 :Single perceptron
I : One layer

if ( (hide-.one - 0) && (hide-.two -0) && (nun-outputs am 1)) nettype =0;

else4
if( (hide..one - 0) && (hide~two, -0) ) neu-ype - 1;

eiwf( (hide-two - 0) ) net-type - 2;

A-17



else neuiype a3;

print((*net-type = %d\n",neutype);
switch (neUype)

case 0:
case 1I output-ayer - &LI; break;
case 2 output-layer=&M.2;

num.stnles = num.inputs*hlde-one + hide-one +
bra;hide..one*num..outputs+ num..outputs;

case 3 outpu~layer -&L3;
num-states =num-inpts*hide-one + hide-one +

hid-on~hie-to +hide.1wo +
bekhide-two*num-outputs+ num-outputs;

/*Read in weights using tie neutype *4

I*s* First read into xhat awasy **4
Ioopi(nwum-stales) fscanf(wts, REAL..MT, &xhat[iJ);

I*** Copy weights to the layer structures **4
switch(neLtype) I

case 0: break-,
case 1: break;
case 2: k..mp2..xfero;

break;
case 3 : kLp3-xfe-ro;

break;
default: printf(read-wts: Illegal net...type =%d!\n1,neuype);

exit (- 1);
break;

I*Read in additional wts info for newer wis ffies *4/
if( wsJyew - WTrS.TYPE..I ) I
fscanf( was, : %d:: &part-seed ); fskipiine(wts);
fscanf( was, %d, &zrnseed ); fskipiinc(wts);
fskipiine(wts);
temp = get-token(wts); I** Skipping over "FEATURES:" 4
Ioopi nwn-inputs) fscanf( was, * W, &flriisf i]

san(was, I Wd, &nonnyv)fski iineowts);,
A* fscanf( wts, REAL-FMT, - = .v~u); fsklpjlinewts)4
fscanf( was, REALFPMT, &junk ); fskipiine(wts);
loopi(num..inputs)
Lmaf( wts, REALY.MT, &meanfil);
fskip.Iine(wts);
fscanf( wts, REALFMT, &sdlil);
fskip~im~wts);

fcose (wts);

AI end read-wts 4

/*******VOID READ-KREJPP-lS************
void read..krepp..wts( wts..name)
char *wts.name;

sL wts;
char stemp, *utk, firs;
int i =0, tkn.Jen Junk;

I.** Open the wts fie **4

OPEN.FIE( wts, wts-naame, *read-wts )

A-18



I*check Mfthe wis-ype indicator is present *4
if( (first=fgctc(wts)) i WI) I

I*No wts-type indicator ptesent *4
I*Atempt to push it back onto the input stream *4

if( ungetc(first. wts) - EOF ) (
fprintf(stdemr 'readywts: can't return character to input stream.\W);
exit (- 1);

wts-type = WTS..TYPE..0;

I** wts-type indicator present *4
tknrejoken(wts); I** sgetting remainder of WTS-TYPE: label *4

fskipiine(wt);&tap)

Read the doata*
fscanf( wts, %d. &num..inputs)
fskipiincgwts);
fscanf( wts, IdW &hide..one)
fskipiine(wts);
fscanf( wts, I%d ,&junk);
fskIdp-iie(wts)-
fscanf( wts, %d,% &junk)
fskIpiine(wts);
fscanf( wts. %d,%&junk);
fskIp.Jine(wts);
fscanf( wts, IW, &junk);
fskipiline(wts);

I**Now get the weights **4
/**Net type w Three layer Krepp **4

output-layer - &L3;
nurn-stoes - numi.nputs*bide..one + hide-.one +

bide-one*hide-two + hide-two +
bide-two*num..outputs+ num..outputs;

/*Read in weights using the neuype *4

I*** First read input layer wts into zhat array **4
lo (numjnput*hide-one + hide-one))

ftcadwtsREALFMT,&xhat[iJ);

/*** close the weight file **4
fclose (wts);

A ** Copy weights to the layer structures. **
**this code was copied from kLmp3-xfcr and *
*Wasspe beto read in the weights *
*fora repnet setup ********

I*** Get first layer **4
loopl(hide..onc)

loop.!(rnuminputs) LI.w~j~iI - xhatTIDX++J;
LI.t etai] = xbat[IDX.+J;

I*** Get second layer **4
Ioopi~ide-iwo)

t10 -ne) 3Sj-ivfl~i gus&1 00 1.

I**Got third layer **4
Ioopi(nuin-output)

A-19



I L3~~.w 0.~ a aussian( 0.0, 1.0);

printf(,\nKrepp output weights initialized \n"),fflush(stdout);

11* end read.krepp..wts 4

I******VOID READ..CMrRELUM~ **********
void readxottre-wts( wts-nane)
char *wts..name;

char *temjL, *tkn. first;
int i=O0, tknien. junk;

1st iD6 -0;

/*** Open the wts fie **4
OPEN.FILE( wts, wts..namne, Iread..yts)

I** Check if the wts..type indicator is present *4
if( (first~fgetc(wts)) 'W') {

/*No wtslype indiaor present *4
/*Atempt to push it back onto the input streamn *4

if( ungetc(first, wts) -= EOF ) I
fPnintf(stdefrrI read-wts: canI t return character to input stream. \n)
exit (-1);

wts-type - WTS..TYPE.O;

else{
/** witsype indicator present *4
tkn=geoken(wts); I** getting remainder of WTS..TYPE: label *4

fsfwts,d, W &wts..type)
fskip~line(wts);

Read the data *4
fscanf( wts, * Wd, &nwnainputs)
fskipiine(wts);
fscanf( wts, I%d , &hide-one)
fskipiline(wts);
fscafnf( wts, I Wd, &hidc..two)
fskip..ine(wts);
fscanf( wts, I%d %&junk);
f"skipline(wts);
fscanf( wts, I%d,% &junk)
fskipiine(wts);
fscanf( wts, * W. &initial-seed)
fskcipiine(wts);

1*.Now get the weights ** 4
/a*Net tyjle = Two layer Cottreli **4

oulpuLlayer - &U2;
num~tates = numa-nputs~hide..one + hide.ooe +

hkde..one*nunm.outputs+ nwrn.outputs;

I*Read in weights using the neuype *4

/** Pit read Into xhat &mry **4
Ioopi(nurnitates) fscanf(wts, REALFMT. &xhatlD;
I*** Clowe the weight fik **4
WcOWe (wts);

I*** Copy weights to the layer structures. **
**this code was copied morn kmp2-xfer and ***

A-20



:was specialized to xead in the weights *
*fraClelnet setup ********

AI* * Get first layer..4
loopi(hidc..one)
4loop-(nurninputs) Li .wUJ[i) - xhat(IDX++J;
LI.t=taiJ - xhatIIDX++I;

/* *; Get second lave *.4

loopi(" one)L2:~j~i angaussian( 0.0, 1.0)
ifikll gassin( -,1 .0 );

printf(\nCottrell output weights initialized \n*),ifush(stdout);

) I end sead.cottell-wts 4

I...... VOIDRED AT********** s**.*.....

Reid a database from file dat-name.

INPUTS:
nmauts determines how many features to use.

Arjitf: d-eteinues which features to use.
num..outputs: used if IDNET is defined.

OUTPUrIS:
numL vectors
db-out[if)
db-in[flU
fluDLOltpuitS

vec-Cntrytl

void fead-dat( dat-nane)
char *daname;

double tern;
imt cnt- k
int dbainputs, db-outputs;
int xat, in cnt.wat esLvecton;
int sca&IIal
char *wctemp;

/** Open the file *
OPENAWLEda~hie. dat-namne- I read-dat )

#ifndef RESULTS
fpfindt(RUN..FJLE, I\nReading ts: ,. dat-nune); ffush(stdoit);

EeWd

I.. Read number of inputs and oupt 4
fscanf( duJIIe, I %d', &db.JnpuTs);fkpnedtil)
fscamf( dmahie, %dl, &dbxutjmt ); fskip-Jine(dat-ile);

I.. estimate the number of Mtauing Vectors
find the nmbner ofwords ad divide by (lnputs~outputsI) .4

wait - 0
while(I)f
wclemp - geuoken(dMahle);
li(wemnp#NULL)
TIMt++;
free(WClern);

A-21



else break;

esLvectoil = wont /(db.Jnputs~db..outputs+ I);
Afifdf DEBUG
fplintf~sdeff,"Estimated number of vectors in ts is Wdn',da..name.

esLvctors);
#endif

I** Reset Mie for radin die Vectors *4
rewind(dat-file); fskpiine(dat-lile); fskipine(datllile);

I** Allocate dblin aW db..out using the est-vectors+2 *4
db-an = dmatrnx(O~esLvectots- 1.,Onuminputs- 1);
db-Mu - dlnatix(OecsLvectoo-IOnwlLoutputs- 1);
vec-nwn = ivector(Oest-vectors-1);

VOC-ntry= iecto(Oet-vetm-1);
id..out = dmatrix(O~est-vectors- 1,.0.0outputs- 1);

Oendif

/** Read the training~est vectors *4
while( I )

/*get next data pair *4
Wf (scan-val~fscanf( dat-file, "%d", &vecc.numlcatl ) EOF)

nun-vectors - Cnt;

np..Cnt M =
loopi(db..inputs)

ijf ( fscanf(dat-file, REALFMT. &temp) =EOF)

prjntf(*rea&..dat: incomplete file -lacks full input vector. \n');
exit (- 1);

if( (inp-cni<ntunanputs) && (i - ftr.Jlsinp.cntJ))
dbjnlcntl[inp..cu++1 - terp;

Lif( fsa.f.o ,REu-MT &dtiouwjcnt][i]) - EOF)

pdW(Iread~dat: incomplete file - lacks full output vector. \n");
exit (-I1);

cot++;
hifndef RESULTS

if(cnt%1O==O) {fpdntf(RUNJIELE,"*1 iffush(stdout);I

ifdef DEBUG
prndt(Iscanf = %d, cnt = %dnscaaL-vaLcnt);

) I** end while *4

ff(csLvecwaqmw.vectofs)
fprinfszdexread-dat: error in reading file: est-.vectors t d,\

nua~vectors = %d\n",esILvectors, um..vectow);
exwt- 1);

fdouedstiile);

/I encd rmaAW 4

A-22



void savejt dti.nme)n
char *dat..name;

save-at: Routine to save a *.dat file. The purpose is to save the
raw MSF db-in[lfl and db..oug][) anus an disk bemase the read..nsfdat
is a very slowpo Pcess.

INPUTS:

dbin[ []
db-out[flU
vec..numU]
nesnanputs, nun-outputs, num..vectons

OUIPUTS

None.

min j, k;
FILE *dat;,

printf(*kpiox.c-- save_dat \nl);

CREATE..FIL3( dat. dat-name. save...dat)

fprinf~dat. %d -- num-inputs\n%d -- num..put~puts\n",num.inputs,
num..outputs)

loopk(nun-vectors){
fpritf dat, I%d .. voc..nwnfkJ);
loopj(nurnanputs) fprnnzf dat. I %e ,db..infk¶J)

oo.num..outpus) fprintf( dat * e ,.db..outt]j li)
f"pntf(dat, .\n,)

fclosedat);

A 1 end save-do 4

void make..mes( input, output)
double *input, *output-,

Pricedure to generate tes data for tranig and testing
-dmassflcaton -4km.

NOME It is assumed tha the randfom number generators have been
set before callin this ronune.

Use stand4g(seadval)to initialiw tandomanumber generator.

O~utput: Two Arrays of double. The first contains the input, and
the second contais the dhahd outpu

Sdefine LOW..OUT 0.10
Sdetine HIGH-OUT 0.90

hit ~ma;
double raios;
hat i;

pdnf(*kpiox.c-- .ake..wsh \n*);

A-23



loopi(4) output[iJ - L.OW..OUT

1.-decide aPPropriate Output fOr M&i vector * 4
radius - sqal( anputl0*inPUt1OJ + input[! ]*input[ I]);
if(radius >2.5)
if(input[I >0.0) A* class 3 4 ouput(2J= HIGH-OUT'
else /* class 4 4 output[31 =HI -OT

else'
if(radius<O.5) /* class 14 output[0l - HIGHOUT;
else{f

if(radius<1.5)4
if(inputIOJ>O.O) /* class 2 4 outputil = HIGH-OUT,
else 1* class 14 output[OJ - HIGH-O[Th

else'
if(input[OI>O.O) A* class 14 output!1 - HIGHOUTM
else /* class 2 4 output! II HIGH..OUT1`

void save..xfm( xfm..narne)
char *xfm..name;

INPL4M xfm~name

=netu.1
avanlj sd .1
num..uzput

OEMPU1M Data written to file

Wt 4 J;
FILE *xfm;

pind("kpiox.c-- save-xfm Wn);

CREATE.FLE( xfin, xfmiunae, Isave..xfrn)
fpdint(xfin. 43d -- num-inputs\nd -- num-.outputs\n.,

L aopl (num~jnput) -Intf8fum %EEs, nafId!1)

lo(Layeffaeuyp-lW- -.nm.outputs){

loopi(num.Jnputs) fprintf(xfui.* %E Wn,L ae~mcyelJ, s wijIi)

fopgnntftxin. fEdn, LayedmE , pe-li.-.thuta(iJ)

fdlowexfin);
A1 end san..xfln 4

A-24



A.5 ps.c

ps-cc Ulfity Functions to supponsperceptrons

Dennis W. Ruck, DS-90D
AFITYENG

#lnchade <skdlo>
#inckid <mmhbh>

Afnclude <macroeb>
#include <globalsh>

#ifdef RESULTS
4lefine RUN-FILE stdout
#elsc
#define RUNML11 stdout
#endi

int fiadjmaO;
void sorlO;
int *ivectorO;
double *dvecoiO;
long law)O;
"vd conpuWe.outpu-fromAL10;
void colnpute..outpuLhvrnH2O;
void gamissazmnonnaW)x;

double sigmokdQ;
double synmmntric..sigmold0);
void pazilbon;
void statso;

int k..mp2..xfe)

/*puind("ps.c- kmp2..fer \a").*

I*** Got fiimlayer **d

mmop inp~~quts) LI.wIJJ[il - xhbgflDXe+J;
11 l-xba[IDX.+J;

I.***Get second Ja~ya **4

'001 .ljýýL.w 1(i -xhKMfX.+J;

I* end kiW2..zbr

lot kLny3.zfa)

loop 0dee

A-25



{loop~immjxin"m) LI .wU]IiI xWs[IDX++I;
Lt iJ-xizatIIDX.+I;

/*** Got second layer **4
toopi(hide-two)

'0 hdeone) L2.wV]i= xhat[IDXJ+;

/*** Got MWin layer **sf
loopi(num-.outpw)

10 hpde-wo) L3.wVI~ijw= xhatjIDX++];

A a* nd kanp3.xfer 4

void stats(err. ace, set)
double *err,
double *acc;
int set;

double sum - 0.0;,
int err-cnt -0&
int *list, list-size. vec;
int ii, taWe;

if( set - MhAIN){
lis = tmiist;
lisusize = nwnj1m;

list - tajist;
list~size - num-st

Ioopi(Iist-sizt)

targe = Wist[J
loo J(num..etw
if (vec..ntumfj - targe)
break;

loopj(ausnanputs) LI .XUI -db~in~vecJU1;

if ( find..ma( &db..outlvec]lloL (numois)
96 find-mrax( otu-e-Y.Y aum..outputs)

errxmn++;

sum +- (db..autfvec]UI - ouu~ yer-.YUJ)
(db..outfveciw1 - uw-p YU;

iflist-Slze - 0
*see -1.0;
ser -0.0;

*effe(0.5 *)s(r(double)le) t~lie);

/s en d Mars 4

void conpuweu~ttmJBl()

A-26



double sum;
int ij;

prinf( Vs. c- - compute-.output-.fromzu11 \n*);

switch (neulype){
case 2:

break;
case 3:

break;
default: fprinlf~sderr,

*compute..putput~frcmH1: can't compute for ne" ýtype =%d.\n,,net-ype);

exit (- 1);
break;

iftneuype - )
/** Comipute outputs of second biddn layer *4
loopi(hide-.two)

if(L2xmak[iJ=OFF)
L3.X Iii = L2.Y[iJ = 0.;
continue;

sum . 0.0;
loopj(hide-one) sumn 4I 2.XUIJ*L2.wU][iJ;
sum +-= L2.tbetafij;
L3.X~iJ - L2.Ylij - sigmoid( sum)

I*Comipute outputs of final layer *4
loopi(num..outputs)

if(outputliayer-.masklil==OFF)4
outpult-yer-.YliJ = 0.0
continue;

sum -. 0;A
loopj~hide-two) sum += outpu~layer-.XUJ*outpuLlayer-.IwUlfiJ;

oututlye-Yrl -siniod(sum);

11* end conmpute..output-fmmJ-1l 4

void comnputc.output-froum.H2)

Liuble sum;,mnt ij;

printR~ps.c-- cosmpute-.output-frouJI2 Wn);

if(se~type $63) (
fplto~stder "compute-.output-fromLj12: can't compute for net..type

%d.\,neL.typ);
exit (- 1),

1.Compute outputs of final layer *4
loopi(unum.outputs)

if~ljnasklQ-OFF)
L3.III-0;

A-27



SUM . 0.0;
loopj(hide-two) sum += L3.XUJ.L3.wU~li];
sum 4- L3.thetaf ii;
L3.YliJ = sigmoid( sum);

)Ie end compute..output-fomnH2 4

double sigmnoid ( a)
double a;
I
double max..cxp;

max..exp = 50.0;
if ( a > max-eip ) return 1.0;
if( a< -max..exp )returnO.0;
return 1/(1 + exp(-a));

ca..ed sigmoid *4

double symmetric..sigmoid ( a)
double a,9

double max..cxp;

max..txp -=50.0;
iff(a >max..exp )return 1.0;
iff(a < -max..exp )return - 1.0;,
ieturn ((2/(1 + exp(-a))) - 1);

)I.end symmetric-sigmoid *4

The following stniwur deflnition and
MAT=L definitons ame for theidnet~pazlltion an pafýLtioni function
which follow

typedef sawee srcdtata{
int vec..num;

int used;
}sitcdata-,

MAThIXALLOCATOR(srd~azamatrix..sm..data)
MATR1X..FREE(srcjWlatafeenatnarxsrc-daa)

idnet-paatition: separates the database into traiing and test sees.

void Wdnepatw6itOo( part-seed)
long paatseed;

sic-data **sic;
int LI jclass, cut =0,IDX;
int trn..cnt-0;

sic - matrlxsrc.dat(0num..outputs- l,0num..vecto- 1);
/** Comput Puartitions *4

numjrin - um..vectors;
"tnJist - ivectot(0,numjrn- 1);

I.Set up the class dosa in a fonnat amenable to picking randomly
Irani each Class *4

looij~nm-ouputs,num-vectoi) srcfi]lU.used - False;
lo"pKSnLf~cos

Class - 0,
mICIAID.e-u - vec..numf 11;

A-28



Sifdef DEBUG
prinf(,Vectors assigned to class 0 are: \n");
10 Uj.(awx-vectors){
prsd %d 1. src[OJUD);

printf("\n*);
#endif

I** Now actually assign the vettors to parltions *4

initstuir(part-seed. state, STATE-SUZE

loopj(num..vectoet) I
while (1) (

if( src[OI[(IDX - random() % nun-vectors)J.used =False){
src[OIIIDXI.used = True;
trniist[trn..cng = src[O][IDXJ.vec..aum;
trn-cnt++;
cnt++;

break;

num.Jrn = trl-Cnt;

#ifdef DEBUG
printf(%ld vector INa assigned. \nl,cnt);,

#endif

#ifdef DEBUG
fprintf(stdemr *The %d vectors in trn-list are: ,numtam);
Ioopi(numarn) fprintf(stdr,I%d I tmndist[iJ);
fprzntf(stderr, I\ n)

#endif

fteinarx-sc-a(src,O,nun outpputs-1OAnum-vectom-1);

)/*end idnet-phztition *4

paiiton: separates the database into tmining and te~st sets.

void Lafiition( mnpercet, pan-seed)
du irnpercent;

long parL-seed;

min num-vecs(MAX..OUTPUTS];
int nunumAIMAX.DUTPUTSJ;
int num..asgnMAX-DUTPUISJ;
int 4 1 class, cnt =O0,JDX;
int trn..tt =0, tst-cnt - 0;.

sic - Inatrixsrc.dat(0nwl-outputs- lOnun-vectors- 1);

I.. detemnnie nunber of vecotos of each class *4
loopi~num..outputs) num..vecsli - 0',
loopi(num..vectrs) num..vecs[fadnax(dboufilmnum.output)J++;

ffifdef DEBUG
printA"The database contains %d total vectors. \n*,num-vector);

,!:%num..outputs) pnntf(" %d in class %d\n",num..vecs~iLi);

/** Compute pankltons *4
loopi(uz.utts nwnjrnAWi = (minX trn.perent*(double)um..vecs[iJ)

#ifdef TRN

A-29



loopi(rmaLoutputs) num-tm += num-rnA Ii];
trn1st-Mivectof(O~numlr- 1);

awlust - num..vectors - nnm
isujist - ivector(O'numltst- 1);

1fef DEBUG
printf("The number of vectors assigned to training by class are: \n);
Wopi(num..outputs)printf(%d training vectors in class %d.\n,,

I*Set up Mhe class data in a format amenable to picdg randomly
from each class **

loopij~ounum-ouputsinun..vectors) srci]iUl.used = False;
loo-pi(nwn..output) num-uagn[iJ = 0;
loopi(nwlLveCwrs) I
class - findinax(db-outfiJ.nwlmoutputs);
srctclass1(num..sgntclal++I.vec-num = vec..nwnlil;

ifdef DEBUG
Ioopi(num..ootputs)
pnntf(lvectors assigned to class %d: , i);
loopi(num.-vecs[iJ)
pnntf(I %d -, src[i]UJ);

pfintf( \n);

tlidef TRN
I** Now actually assign the vectors to pnios*4
initstate(part-seed state, STATE-SIZE)
loopi~nwn-output) I
loopj(numarnA[ij){

while (1) 1
if( srclill(IDX - random() % nwn..vecs[iJ)J.used =False)
srcizllIDX].used -Tnt;
trniistfum-cnhl) a src[iJ[IDXJ.vec.,num;
tmxcnt++;
Cat++;

break

sum-Im = tlm.ct;
#endif

loopi~num-outputs)
1oopj(num..,,ecsPDJ
Wf snjiljjl.used - False) {
ts~jis zlwcnhJ - srclijuJ.vac..num;

tstcnt.+;
cut++;

num.Js - taect;

pridatf\n%d test vectors assigned.,awi-tst)

ifdef DEBUG
fpdWAtfaler, "The %d vectors in trn-.list are: *, um-tm);
"lo~Inuman) fpdadnuden,*%d O,tn~blist));

fk sldt 'The %d vectors in tst..list are: ,num~st);
" no~~umist) nfp ~stdei* %d 1, Wslibf ij);

A-30



#endif

freeinatrix-sc.daw(src,0,num.outputs- 1,0.num-vectors- 1);
}

void mp3..LxferO

mp3•..xfer transfers the weights from the layered structure
to a vector structur for use with kalman training or saving data
to a file.

int IDX-O,iLj;

- The kalman algorithm assumes the weight matrix is of the form
- W(destsic);

- The theshoJds ae put into the weight matrix as another column.
- Thus the input vectors for each layer am augmented at the end
- with an enty of unity.
- The kalman vector is stored in row major loim starting with the
- first layer followed by the second layer and then the thid layer.

pnntf(Rps.c-- mp3_k.xfer \n');

loopi(hide-one) {
Ioopj(nunminputs) xhat[IDX++] = Ll.wUj]i];
xhatIIDX++J = L1.thetali];}

loopi(hidea.wo) I
loopj(hide.one) xhat[IDX++J = L2.wU[lli];
xhaz[IDX++J = L2.thetail;}

ioopi(num.outputs) {
loopj(hide-wo) xhAt[IDX++] = L3.wU][ii;
XtllDX++] - U3.dhetai];

}

void mp2.-.xfcr)

mp2..Lxfer trnsfers the weights from the lyemd strcture
to a vector structure for use with kalman training or saving data
to a file.

int IDX=O. L j;

- The kiman algorithm assumes the weight matrix is of the form
- W(destrc);

- The thresholds are put into the weight matrix as mother column.
Thus the input vectors for each layer am augmented at the ed

- with n envry of unity.
- The kalman vector is stored in row major form starting with the
- first layer followed by the second layer and then the third layer*4

pdntf(lps.c-- mp2_k.xfer \n*);

A-31



= I j(num..nputs) xhazllDX+i.I= Ll.wUj[iJ;
Ihat(IDX++J - LI.tbetsfij;

loopi(nurn.outputs) I
=loop(hide-onc) xbaz(IDX++I = L2.wUJfil;

xhatIDX.+J = L.2.theta[iJ;

void gaussian..nomialize()

gausian.nozalf*O:Normalize data so that dhe training set has
a menvector of zero and a standard deviation vector of ali ones. Only

tefeatures beig used ame nomialized.

INPUTS: num..au
Im-fist[)
vaccentry[J
an-lvectors

dominanLsensor

OUTrPUTS: dbdn (if)
meanf
sd[l

double *sujn, *sum..2;
int vec;
int L j. k. Inwl-inputs, writ;

/*printf("psx- gaussian..nomialize \a"),4

sum on dvector(O,num-n1,uts- 1);
sum-2 = dvector(O~num-inputs- 1);

if((dominancsnsor-FUJR)II(dominant-sensor==RNG)) Inuminputs =num..inputs- 1;
else Inuminputs so nunuinputs;

loopi(lnwl-inputs) sum~iJ - sumililj = 0.0;

I**s Compute mean and sd oftraining data *4

loopi(num.vcwn

if (tawe unvec..numljl)

loopj(lnum.inputs)
sumtjl +- db..n[vecJUJ;

st-UI += db..inlveciUj*db..inlveciUi;,

loop~inun-inputs){
meantil - sumfil lidouble) numjrn;
Willi - sqrt( (sumn.21i1 /(double) numaru) - meanii*nuanhii)
if (sd~iJ -0.00) sdf ii - 1.00-

Mifdef DEBUG
pfind(*eannsil))

loopi(Inwu.Jnpus) printd(*%g ,sd~iJ);
prlnd(\n;

A-32



Now apply to ail daa *4
loopi~aum..voctoim){
Ioopj_(lnum-inpts)

dbain[iJUJ - (dbimnhJUJ-meanuJysulli;

free-dvecto,(sun.O,0numifl puts-1);

)/*end Sausian-nonnalizre *4

ganussm.unonnaliaco: Unnormalize data.

INPU73S: num-vectors

dominaaLsensor
MEMO

OUTPUTrS: dlb-nffjJ

void gamsiazLunnormalize()

int j. inum..inputs;

I*prinTf~ps.c- ausn.uonlfe\B");4

if((dominant-scnoru=FUR)IIj(domh=antsensor--RNG)) Inwuminputs =nmin puts- 1;
ekse Inufi-inputs W nwn-inputs;

/*. Now unnonnaire afH data *4
loopij(.um..vetors.Inum-inputs) dbainhi)lJ - dbanti]lfj*sdU] + meanhil;

)/*end gusa.unnlie*4

ones-.nonnalize: Nonnalizes data between 1 and -1.
Must be cale after the above
gawzannonalie udnde is

INPUTS: dbJn[OI)
numninputs

OUTPLEfl max-value

double ones-noimalh)

double max..valuel - 0.0,
double mnax..value2 - 0.0,
double max;

loopi~um..vectorg)

10(nd(aum.injputs)

if ((max - fabsdb..n(iJW])) > max-valuel)

thax..valuel -mwax..

if ((max > max-value2) && (max 96 max..vaiuel))

max..vahe2 - max;

A-33



fprindARUNSLEF,*\nones-norualize max-valuel. is %9 .61f% max-saluel);
fprintf(RUN..FUL.Er\nonet~normalize max~yalue2 is %9.61f, max..veaue);

1* now divide &li data by she marsvalue V
if (mars-aluel #00.0)

lopi(nun-vectora)
loopj(nwn.nnputs)
dban[iJ~jj si (dbi~n~iIUInx-vahae1);

I
return nax..valuel;

/* aind ones-normalime 4

A.6 psx.c

psx.c: Perceptron support packoge with routines that am dependent
on the number of layers in the net wok.

Dennis W. Ruck, AEFIVENG
DS-90D

#include <sio~b>
#include <mash.h>

ffinchade <macrosh>
Mnclude <globais~h>

dule sigmoido);
dule syieri-sigmoido;

void comuettO
void compue 0;
void ialcaeO
double 0*mrx;
double *dvectoro;
void displayinputo;
void display..output);
void displaA);

void initnet()

init.netO: Initialirs data sutmcwres depending on the number
Of layers.

Input:mye flLf nu(su. hide..owz hldeatwo, numsoutputs,
t, l&U 1-21

Output: Layoff), output-ayew, numasates

lot L;
witlype - WIt-TYPLI1;
loopi(nurninputs) inputmask~i - ON;

/*prlnlf~psz.c- lnk..nei \n "td

A-34



switch (elp)
cue 1: *ie.o -A hide..zwo -0*

num-stn ------ own..oUtpUtS;+ nw!Loutputs;

La 9-.num~jnputs -nmnus

maiayer( Layer[OI.L~iayeriO-.um..inpuw.Layer!OJ--nun-outputs)
break;

case 2: bide-two - 0;
numitaes - aum-inputs*hide..on + hide..ooe +

hide-one~nm..outputs + nwn..outputs;
outu~aye -&L2;

Lyr01 =&LI;

Lae!O-#nwn..outputs = nwn..outputs;
0ayrt--#nun.Jnputs a hide-one;

LAye!O--eta m eta.out;
LAer I J--nun-outputs - bide-one;
Laer IJ-num-i puts -nwn.Jnputs;

Laer IJ.a-ea;
,nloc.Iyr LayerIOLAyer[O1--num-inputsLAyer[0J-.num-outputs)

malloc Iay Ler!1IJ.Layed I1-'nwn-inputs,Layer! IJ-mnwwoutpts)
break;

case 3:
num-states = num-inputs*h~ie-one + hide-one +

bide~one~hide.two +o bide-two +
hideaw~w~upt + num-outputs;

outpu m-oayer - -&L3;pus

Layeeta -&LI;ut
Laer0-.num..outputs = bide-toupt;
Lae!1 -4nwnnu. hide-Jom;

Layer! 2 Jnuit-output - hideowo;
Laye I num-inputs - hmidepre;
L=AyetIeta - eta..iJI;

Laye!2jrnuinpts numinputs; us~ýO nm-upt

,nailoclyr Layer! I J.ae!I J-&nnn usaer1-4nunl..o-utputa);
.ailociyr Lakyer!2JLayerf21--mjnurnnpuAyer[2J-.nurn-outputs)

defaik: nfO(stderrlinit-net: invalid net-.type = td\n*.De~type);

break;

xhat = dvector(0,aumistaes- 1);
Ioopi(Oeftyp) IoOPj(LAyerji)-8Um-m0oaVut) Layrfji]-mmukUjJ ON;

A co ed kkm.ne 4

kjnpx.xfeur thasfer weight from vector
to a Iayew-d stroctu

void Lmpx.xer!)

I*prWtIpsx.c- kjnpz.zfor \n"),

A * * Got Next Layer..4
ioopi(Layefk]-.num-outputs)

A-35



lOOpjLyM I- Omimznpats) LatrfkJ-.wUJ[iJ - xIaf IDX++I;

) I end L-mpzaxfer 4

mpztz-fer mumnsfes the neights from the layered stnicauc
to a vector stniceuae for use with kalmn training or saving data
to a file.

void mpx..Lfe()

lot IIDX-O ,LJk;

- Te kalman algotithmn assumes the weight mstrix is offthe foam
-W(destM,s)

- Te thresholds =m put into the neight matrix as another column.
- Tus the input vectors for each layer are augmented at the end
-With -n enuy of unity.
- Te kulman vector is stored in tow major form staring with the
first layer followed by the second layer and then the thir layer

I*pflntf`psx.c- mjpx-k-zfer \n"W),

loopK(Layertkj-.num-ooputs)4
Ioo¶ILayrr~k)num.Jnruw) xhat(IDX++J Laye~kJ-.w~J~iI;

xht[DX+]-[ayerf tk ii;

11* end mpx-k..xfer 'U

void cownpe-ureaput()

swiwcbneuyp)

cuse 2:
caue 3: compwteostpunxo;

defouik: puintfC'coinpute..putput: can't perform calculation for net..type=
%d\n,. neLtype);

11* end computc..ourput 'U

void com~wp sxeout

double sm.n *mask;
Ist ij k;

doopk~nnde)
4loWXILayer~kj-.mmuztpuws)

1 fLAyet~kJ-.masKQ-OFF)

A-36



m l~a Ye&ij -Xi 0. 0.0
continue; yik -~j=00

if~k - 1) mask - inpuumask;
else m 2 'ask y~er~k+ ]--*mask;
sum a 0.0-,
loopyj(yr]k-.num-inputs)
sum+4= .yverfkJ-.*XII*Layerfkl--woljJi]*maskUjJ;
sum +- Layer! kJ-.tetaf ii;

#ifdef LINEAROLIT
if(k==0) Layer! kI-.Y[iJ = sum;
else Lqycrjk)-.#Y[iJ z: sigmoid( sum);

#endif

#ifdef SYM.SIGMOID
Layer! kJ-Yfi] - symmetric-sigmok( sum);

cendif

#ftdcf SIUMOID
LayerkJ-.#Y[iJ = sigmoid( sum);

#ifdef INP.SYM
if(k=-(neutype-l1)) Layer~k]-Y! i) = symmetric-sigmoid( sum)

#endif

if(lkio) Layerfk-lIl--X[iJ - Layerfkl-.Y[i];

}I* end compute..otputx 4

void malloclaycr 1, inputs, outputs)
sumc layer *L;
mnt inputs, outputs;
I
A* priafnUTp~zc- malloclayer \n "M

L-.w - dmatrix(0,inputs-l1,0,outputs-l1);
L-.dw - dmatrix(0,inputs-I1,0,outputs-I1);
L-.w.old = dmatrix(0,nputs- 1.0,outputs-l1);
L-.4theta = dvectot(0,outputs- 1);
L--*dtheta n dvector!0,outputs-1);
L-.tbeta..old - dvector(0outputs- 1);
L-.#beta a dvectos%0Ooutputs- I)k
L-.gamma - dvector!0,outputs- 1);
L-.#del m dvectoroutputs- 1);
L-#mask = dvcctor(0,outputs- 1);

=-X dvector0.inputs- 1);
L--# dvactor!0,outputs- 1);

void display..inputnumber, max, aize)
int number, size;
double max;

int.1;
satmic in( num-in-
char infilef201;

aunmin++;
spixntf(inflle. *%eadto". I1N*oun.Jn O.recl);
image afopen(infIle, owl);

A-37



emm - ((dbJnlnwnberlljj*max)*sdfj) + aman Ii;
fpdndimage. %1O.6f ',temp);

Icloseimage);
ifdef VIEW
sprlntf(commnand, 4ststs", 1cp 1,infile, I tempINI);
syrstem(command);
dislay(size, "tempINI);

void display..ott"Wuima size)
double max;
iet slize

iet i;
sttcnitnumout - 0;

char outfike 201;
char command[80l;
double sqrtO;

nuin.out++;
sprintf(outfile, ts~ds", OUT*,num..out, .rec*);

=mae - fopcn(outfle. w');
Iopi(nuin.ouputs)

temp - ((Laye4Oj-.YjiJ*max)*sd~il) + meanhil;
fprintf(inage.-t10.6f *.temp);

1loskaef);
ifdef VE
sprind(command, %stss%s"cp 1. outfile, IteinpOUTI);

sytmcommand);

,disaysize, IteinpOUTI);

"* d~isplhyx
"*CM Sovxapra ik to rkand

*displays kin open windows using

void dispbay( X~ filenamne)
int X;
char AilenameD;

char comvmadf 801;
sprintf(comemnd. * ststa cp % filenuMeI temp. rec 1;

systm~ofioat...gray temp. rec temp. red");
spint~couund%9%d %d 1 1graytorle -o temp. rle 1, X X);
srcmconiand.temp.red");

sprIt cnuandes 0. Omv temp. rle 0.filenme, I. rle );

W W 'jcoe tgn,*% ts9*,x1i -quiet -zoom 300 *,filename, *.rle )
sya'onunand);

A-38



A. 7 utits.c

utility Functions

#finclude <stdio~h>

fifnidef NE~
#include <mailoch>

extam char * mafloc;
#Cndif

Sinclude <math~h>
#inchude <stninghb>

#include <macros~h>
Muiclude <globais~h>

A * External System Clls *4
extenn char * geteavO;
double drand48 0;

We* Internal Functions *4
imt find.MaxO;
Boolean findO;
void system..checko;
void sortO;
char * parse-fhname;
char * get-token 0);
double gtaussiano;
double distance20);

lint find..max( data, len)
double *data-,
int len;

double max..val -=dt-
int max-idx a0;
int i;

loopi(len) if ( *(data+i) > max..val)

max-vat a *(data+i);
max-idxai -

tetum max-idx;

AI end find-max 4

void system..checkO
/*. Checks the system for reliable operations *4

static char sc..nameISOl - systia...check1A992";
FILE *sc;
double x..out -123.321;
double x-ii;

pwuntf(lutils.c-- system-~check Wn);

A1/0 iocheck 4
if( (sc -fopen(sc..namne, *wl) -NULL)
f
fpdndstdetr, Isystem-.check: canIt open ts for writing. \n\

FATAL Error.\n,inc..nue);

A-39



exit (-);

~fora sREAL.FMT, x.out);

if( (sc - opcn(sc..namne. r )NULL)

n~itft stderr, Isystem-~check: can It open ts for reading. \n\
FATAL Error.\n~sc..name);

exit (- 1);

fscanf( ac, REALYMT, &x-in)
if( x.out 6 ian)

fprintf(stdenr *systemscheck: Floating Point 1/0 Error. \n\
FATAL Error\n');

unlink( sc..name)
exit (- 1);

unlink ( sc-namie)
printf( systeum-check: OK.\nW
A1 end systenxhchck 4

A*. Procedure to sort an input amy *4

void Qpurtitlon ( daza, rank, split, lower, upper, newi, new.u)
double *data
tnt *rank;
register lot split;
ant lowerl,
int upper,
int *new.J;
int *new-u;
I
register int i = lower, j = upper,
register int temnp;

pnnatf(lutils.c-- Opartition \n");

do {
while(C datarrankliI < data[spl]itl++;
while ( datasplitJ< datarazklU11 j--;

temnp - rani[i;
raklil - rankol;
rakU] - temp;

)whil (i~cj);
*new..a = .

A*Rec~uriveckson *4
voidqukkort(dsMrank, upper, lower)

double *data
int *rank;
lot upper, lower,
1tnt split;
tnt newaip, ewijow;
tnt tamp;
int i;

printf(utile.c-- quicksort Wn);

A-40



if (upper-lower > I ) I
Msplit= ranOk(upper+1ower)r2I;Qpartiton( d"ta rank, split, lower, upper, &newiow, &new-up)
quicksort( data, rank, upper, new-.up );
qulcksoui( data, rank, newiow, lower)

)else
if (upper - lower -I

if ( data! ranklupperi] <datarankilower]])

teu u ranký upper];
rkupper] - rank! loweri;

ranklowerJ - temp;

void sort( data, num-elements, rank)
double *data;
lint nun-elements;
lint *rank;

Th* 7e output is the rank of integers, rank, which gives the sorted
order of the the rank of doubles, dama That is, the smallest =7 ~in
the array data is index rank'O).

int i;

printf(lutils.c-- sort \n');

loopi(nurn-elemnents) ranklil -=

quicksort( data, rank, num-eleinents-I,. 0)

cha parse-fname( namne)

char * ouLnarne;
char var..nme[2561;
char ou-temp(256J;
char * vr.ah
imt (nevuin, vp.Jen ouulen;
int i;

pnintft'utils.c-- parse-.fname \n");

fnien - strien(finame);

/** See if it starts with a dollar sign *4
if( feaae!OJ - , $ )

/**expand envirownent varabl * 4
in 1;
while( (manae! ii I
4var-nasm[i-J f nmeli];

var..natneli- 1] 0\O;
if( (var-Path - getenv(var..name)) - NULL)

pnintf(*Parsejfname: environment. _iable $%s. Not defined%,
var..namne);

exit(- 1);

),*Now combine into the full path *4
vulen - strlen(var..name);
vPieO - str vlenvr..ph);

A-41



;,qOi(vp.Jen) ouueMpIO - var1pathiJ;

fOr0i.Ojkfnilen-vnilen- 15i++)
out-templi+vp-lenJ - fname~i+vnilen+1J;
out-lemp[i+vpilenj - \0=

else

/*. copyiptattooptpah.
looppi( fn~ienp+ul )aobutileompWil ffinam~ie[iJ;

I.Now allocate memory for ouLnaame *4
if( (out-name = malloc( (out-len = strlen(ou~temp))+l ))=NULL)
I
printf(*parse-fnamne: out of memory.\nl);
exit (- 1);

loopi(ouLlen+l) out-narne~iJ = outlemplil;

return out-name;

) I end parseinhame 4

char * get-token( str)
FILE *str,

Returns the next string of characters in strein, STR. which is separated
with white space.

char temp[1O24];
char * tk..ptr.

imt i;

I.. Find fiast character of token *4
while(I)

ijf( (tempiOl fgetc(str)) == EOF) return NULL;
ift(temp(OJ1 1) && (temp[OJ] 961\nl)) break;

while(l)

temptil - fgetc(str);
switch (templil)

case I\nI: tenpfiJ=-'\ 0 ;
break;

caseEOF: temp[il-'\O';
break;

default : break;

if( (t*ptr - malloc( srlen~temp)+ I) NULL)(
fprinf( sder, get...token: out of memory. \n,;

l0O~i UfL*KWMP tlpt) &Xii - tempiJ;

} * end geUoken 4

A-42



double gaussian( mean. var)
double mean, var,

gaussian: retuns a gaussian randon variable sample with specified
mean d vaance. The central limit theorem is invoked to
generate the sample.

int num=.rvs 20, i;
double sum - 0.0, ave, norm, Z, Y;

- Obtain a sum of random variabks tha are uniform between

- 0 and 1.

loopi(num.rvs) sum -= drand48();

ave = sum /(doubleXnum.rvs);

- AVE is a rv with mean = 0.5 and variance = l/(12*nunLr.s);
- now normalize AVE
*4
Z = (ave-0.5)/sqrt(1.0/(12.0*(doubleXnunmvs)));

- Now unnormalze to desired mean and variance*4
Y = mean + sqi(var)*Z;

return Y;I

char *makeuname( num, root, ext)
int num;
char *root, *ext;

makeitame: Function to create a file name Ifiven the root,
a number, and the extension. The fil name is of the form:

root number "."ext

char *fname, numimage[80;

printf(lutils.c-- makejname \n*);

sprintf( num.image, * %d , num);
fname = malloc( strlen(roo+strlen(num-image)+strlen(ext)+2);
strcpy( fname, root );
strcat( fname, num-image);
strcat( fname, ,. " );
strcat( fname, ext);

return fname;
) Ie end make-..mme 4

char * make-flie( root, ext)
char *root, *ext;

make.fik: Function to crte a file namo given tbe root

A-43



and the extension. The fie name is of the form:

root .ext

char *fname, nwn.image[8OI;

fhame = rnalloc( strlen(rootU+strien(extW+2)
strcpy( fhame. root)
strca( fname, I.
strAt( fname, ext)

return fname;
A/ end makefile 4

Boolean find(rnznfile, var-name)
FILE *run-file;
char *var..name;

mnt cut. var-length;
char str[8Ol;

printf(*utils.c-- find \n");

varilength = strlen(varname);

while(l)
if((strtOIfgetc,(nmlile))==EOF) break;
if(strlO)w=var..narne[Oj){
cnt= 1;
while(l){

Wf ((a jct1=fgetc(run-fle))==EOF) I
(cnt>varilength) )break;

strfvar-lengthj- 0\'
if(stwcmp(strwar-name)-=0) return True;

return False;

} I. end find *4

double distance2( xl, x2, lea)
double xl(0, x2[J;
int len;

dtstane2: compute Euclidean distance between to vectors

double sum;
imt i;

pdndt(utils.c-- distance2 Wni;

sum = 0.0;
"gopilen) sum += (xl [ij-x2[i])*(xl [iJ-x2fiD);
return uqrt(sum);

1I*end distanee2 *4

lfdef NEXT

A-44



double drand48()

long Ival;
Ival = andomnO%2 147483648;
return (double)Iva/21 47483648.0;

void srand,48(seed)
long seed;

Irandomn(seed);

lendif

A.8 displayxc

*displayxc
*con verts a .$= file to de and
*displays it in openwindows using
*xli.

void display(dimiension, filenamne)
int dirnension;
char filenamielJ;

char command(80];

sprintf(commianid. %ststs, cp 1, filenamne, .gra temp. rec)
systemn(commiand);
systenX~float...gray temp.rec temp.red");
switch(dimnwsion){

case 128:
systen(Ograytorle -o temp.rle 128 128 temp.red');

break;
case 64:
systei(Igraytorle -o temp.rle 64 64 temp.red");

break;
cuse 32:
systen(Igraytorle -o temp.rle 32 32 temp.red');

break;
default

printf(1 donIt know what size the gra image is. I);

systemK-rletlip -v -o hold.rle temp.rile;
sPrinlf(commrand,"%s%s%s1,mv hold.rlefkae.l)
systern(commaund);

sPrintf(commnand.,%s%s%s",x1i -quiet -zoom 300 -smooth -smooth ,filetinrme,.rle&,);

systern(commanwd);SystenK~ri *.red*);
systenK*m temp .*.);
systei(Irm * rle);

A-45



AS9 globals.Ja
J**** Global Vhriables **4

int nwu-inputs, hide..one, hideatwo, flnu-Outputs, temp..outputs;
double eta.Jn, cia-out. etail I11H2;
imt neulype;
int wts-tye = WI'S-TYPE-1;

tnt iterations u 0;,
int initial-seed, put seed, tm-~seed;
int awm-satais;
int nuan-vectors -0.
imt *ftriis;
int *vec..num;
int *vec..entry;
imt nun-Irn -0, *trniist;
int nuwnast % 0 *tst-list;
int normnaype;
int dominaut-sensor - 0;
int numilir, *flirlist;
Ut nwn..rg, *rug..lst;
itUfeL.An~fLt-eor,
int maxiterations, output-interval;
int batcbh-size =1, batchent =0;

char state[STATE-SIZEJ;

double trn.frac;
double alpha;
double max-value;
struct layer {

jut nunmanputs;
int nuum.outputs;
double eta;
double **w;
double **dw;
double **w..old;
double *theta;
double *dtheta.a
double *theta..old;
double *del;
double *beta-
double *gamma;
double *rnauk;
double *X,
double *Y.

) LI, L2,13;
double *input-mask;
double *xhat;
double D..out(MAX..OUTPUTSI;.
stnact layer *outpuLlayer, *Layeif 31;.
double **db.Jn;
double *udb..ot;
double **id..out;
double *mnean, .sd;

As* Global DaNS for Kalman Trainng * 4
double **R. d(MAX..OUTPUTSJ, z[MAXJOUTPUrS];

A.10 msacros-h

Convenient Macrns for Ncpmanw Pakage

I..MA CROS **4

#clefine REAL Bloat
Efnfdef 0CC
#define INT..MAX (2147433647)

A-46



#else A* 0CC 4
Mmiaude <nimits.h>
#endif

#ifdcf VMS
#define unlink delete
#endif

#ifdef LEO
#define REAL-FM %g,
#else
#define REAL..FMT %1g,
#endif

Ilifdef NEXT
#undef REALFMT
#define REAL.FMT %If
#endif
#ifdef VMS

Aindef REALJFM
#define REALFMT %If
#endif

#define Boolean int
#define False 0
#define True 1

/** Dominant Sensor Definitions 4s
#define SINGLEO0
#define FUJR I
#define RNG 2

A** Mask Definitions *4
#define OFF 0.0
#define ON 1.0

char junk-meponse[2561;

#define fskipiline(A) fpetsounksesponse, 256, A)
#tdefine sipiline Ves~unkzesponsc)

#deofine for(i-(A)-Ij5>0.j--)
#dcfine rloopl(A) for(k=(A)- IXE>O~k--)
#define rloop(A) fbf(luI(A)- 1;1>U;1--)
#define rlomA) fos(m-(A)- r~m>0;an--)
#define rloo nA) for(n-(A)-1~n>5O;n--)
#define rlooppA) foi~pm(A)-l;f5;0;--)
#define H~oi(AB) for(i i)-> 5--) )
#define opaA for(i=0j<A~i++)
#define FopjA fo~-jA .')
#define ~A) fo~-,< k++)
#define Iop(A) for(l-0;<A1++)

#define lomA) fo*nw,m<Amn++)
#define Io(A) for~n=0&n<A~n+.)
#define Iop(A) for( u~<A~p.)
#define HoojAB) fotr(is<AJ++) for(J0J<Bj++)
#define MALLOC(ABCD) lf((A-(C *)rnflc(B)*simtof(C)))-NULL)4\

fprintf(stderrsuma(DI: insufficient memory\n*));\
exit(- 1); )

#define CREATELFILEABC) if((A-fbp nB, wl)) - NUL.L)4
printf(strcat(C,*: can't open for writing - t.n)B;

Call (- 1); 1
ftefine OPEN..FJLEA.BC) if((A-fopea(B. rli) - NULL)4\

ptintf(srca(C*: can't open for reading - t.n)B;

#define F (A.B) ((((A)-(B))< IE-6)? 1: 0)
#define IABS(A) (QintX(-(A)<(A)Y?((A)):(-(A))))

/*Di vidina by1 Insures dugccat nd rcg m emsults *4
#defineIRMNF(A) (QintXral(A).(flou)N-vMASXNY100)

Ii.. AD of thes am ------- n on the definition of "layer" *4
#define MA NPT 1500
#define MAX.NODES s0

A-47



0define MAX.Hl-NODES so
#define MAX..H2.NODES s0
*define MAX-.OUTPUTS M50

#define MAXNVECTORS 10000
#define STATESJZE 256

#define WTS.TYPL-MSF 2/A new weights filed
#define WTS..TYPEl I 1/*new weig~hts Aile 4
#define WTS..TYPE-0 0 /* old weight fI 4

#define TRAIN 0
#define TEST I

#define THREE-LAYER 3
#define TWOIAYER 2

#define MATRIXALLO)CATOR(DATA-TYPE.RCN..NAME)\
DATA-.TYPE **FCN.NAME~nrlnzbnclncb)\
mlt adjnrhacLocb;\

tnt i; \
DATA-.TYPE **m;\

m-(DATA-TYPE **) malloc((unsigned) (nrb-nr~l+)*sizeof(DATA..TYPE.));\
if(ft) nrerror~lallocation failure 1 in matrix(P);\
rn-- nrl;\

1`6oi-inorj:nrW,++)4\
mliJ=(DATA..TYPE .)mailoc((unsigned) (n b-nc1+I).sizof(DATA..TYPE));\
if (WmiI anmroW allocation failure 2 in matrix 0 1;\
mli] -- acl;\

return rn;\

4define MATIWXYREE(DATA..TYPE,FCN.NAME)\
void FCN-NAME(rnnrlnrb~nclnch) \
DATA-.TYPE .. rn;
int nrlunrbvnclacb;

int i;

fme((char.) (m+nrl));\

A.)) globals. h
I...s GlobeI aimbkes **

exters inlt num~inputs. hidemoe, bide..two. num..outputs. teznp.outputs;
extern double ciwia eta.out, et" .I -H2;
extern tot aet-type;
extern nt ot-tp
extern lot sunlyers;
extern lot kIrtermloa
extern tot initial -ed, partseed, trujeed;
exte.n tot num-stmes,
extern ot swum-Vectors
exletn lot sftr.Jiw;
extern lot .vecinm
extern tot *vec-eotly,
exten tot numtzrn, o.m-list;
eites lot sumrut , *tulst;
externnt ttmounlp
extemns ho dslanes

A-48



extern tnt num.Bir. *fiirilist;
extern lot numntrg. *mg-list;
extem int curtnnLvector,
extem nt ot ax-iterations, output-interval;
extern lot batch~sirt, baihixnt;

extern char stateSTAT-SIZE];

extent double trnirac;
extern double alpha;
extern double amavalue;

extern satwc layer I
int. nun-inputs;
lot nwn..outputs.
double cia
double **w;
double **dw;
double osw..old;
double *theta-,
double *diheta;,
double *theta-old;
double *del;
double *beta;
double *gamma;
double simak;-
double *X;
double *Y;

extern doule *inputmask;,
extern double *xhat
externt double D..out[MAX..OUTPUTSI;
extern atnic layer *output-ayer, *Layerf 31;
extern double **dbi.n;
extern double **db-ou;
externt double **id-out;
externt double .mean, *sd;

/s * Globa Dana for Kahonan Train M* *4
externt double .. R, dIMAXJ)UTPUTSI. z(MAX..OUTPUTSJ;

A.12 makedam.c

NAME. muAkdaa~c
INVOKED:- makedata cimlfist lisLsfrt Imagesime #lcnase ouqmfiik
DATE: 25 Ma 92
DESRPIN Thi routine generates the dam file used by the network.
WRITEN B Y. Dennis L. Knapp
MODIRED:-
SUBRouTnF~s CALLED:

MUflREMODIFTCA77ONSIBUGS.

Anclude <s~idob>
ffinclude <mmhbh>
#fincludle <stdlib~h>
finchude <s, unRh>
Alefie PIXELS 1024

To use IawW hnhges change the size of
PIXEMlS.

lot hmqepIXEISI;

E3WwgKr)
lot agc;
char owvl;

FILE sfanein, Ofot, .dfisfle;
lot dosa.M. k. J;
lot class L, lpis.cfpt s

A-49



intteMnp;
char oualile(301, filena=1f301. tempfile(30J;
char *strcpyo;

if (NBC 96 6) {
pnintf(*!!! The command line should be H I :\n\n uiakedata classlist-.file #_files_in-list Image-.size (pixels)

#-classes Outputjfilejiame\nl);
exit(0);

Set Up Fils************

if((classfile -fopcnwav[ 11, r"))- NULL)

pnintf(1 can't open the classlist-.file');
fflush(stdout);
exit(- I);

Monatoi(arv[21); A* M = Number of images in classsistffle 4
inputsu orsoi(auuvl31);
outputs - atoi(argv[41);
strpy(outfile, azuv[SI);

I****** Open output fil for writing *****4

if((fout = fopen(outflile.w1)- o NULL)

pnt(Ican't open the output file ts \nl,outfile);

exit(- 1);

prinf(*Output file: ts \n\n1,outfile);Mfusb(sdout);

4qrnt~fbfut, %td\n~inputs);
tprintf(fout, I d\n, outputs);

1. Read dtaaisLfile for filenamffe
2. Write exempiar number to output file
3. Copy input file to output file

for(k-1; k<M; k++)

fscanfclsfile, *%s\n1.filename);
p&WInt~nput file: ts \no.fiename),fflush(stdout);

fscanf(cssmflIe %do, &class);
ptinf(,Class is: %d\n*,clm);

fprintf(fout. 1%d\n",k);
OW*Extplar number: td\n\no~k);

if ((1mwel - fopen(flienamc* r1)) - NULL)

puintf(*l can't open the input file'),ffiusb(stdout);

while (fscanfwaeln. - d-, &Secp) -

"prn(fout, -% 8.4f ,fotsm)

1..Write Clues dota to file ... 4

fowdmotuj - J) -

A-50



fpriatf~fout, It f 1, 0.90000);

I
fpiinlf(fout. ts'. "\n\n*);

knfcocfacein);

fclose(fout);
fclosc(cinsfile);
printd(*\n! 11I ALL DONE 11 nI! )

A-5I



Bibliography

1. Abbas, H. and M. Fahmy. "A Neural Model for Adaptive Karhunen-Loeve Transformation
(KLT)," IJCNN, 11:975-980 (1992).

2. Aibara, Tsunehiro et al. "Human face recognition by P-type Fourier descriptor," SPIE Visual
Communications and Image Processing, 1606:198-203 (1991).

3. Baldi, Pierre and Kurt Hornik. "Neural Networks and Principal Component Analysis: Learning
from Examples Without Local Minima," Neural Networks, 2:53-58 (1989).

4. Bouattour, et al. "Neural Nets for Human Face Recognition," IEEE IJCNN, 111:700-704 (June
1992).

5. Cottrell, Garrison W. and Janet Metcalfe. EMPATH: Face, Emotion and Gender Recognition
Using Holons. 2929 Campus Drive, San Mateo, CA, 94403: Morgan Kaufmann Publishers, Inc.,
1991.

6. Cottrell, Garrison W. and Paul Munro. "Principal component analysis of images via back propa-
gation," SPIE Visual Communications and Image Processing, 1001:1070-1077 (1988).

7. Cottrell, Garrison W. et al. "Learning Internal Representations from Gray-Scale Images: An
Example of Extensional Programming," Proceedings of the Ninth Annual Cognitive Science
Society Conference, Volume unknown:461-473 (1987).

8. Damasio, Antonio R. "Prosopagnosia," Trends in Neuroscience, 8:132-135 (1985).

9. Duda, Richard 0. and Peter E. Hart. Pattern Classification and Scene Analysis. New York: John
Wiley and Sons, 1973.

10. Farahati, Nader et al. "Real-time recognition using novel infrared illumination," Optical Engi-
neering, 31(8):1658-1662 (August 1992).

11. Fleming, Michael K. and Garrison W. Cottrell. "Categorization of Faces Using Unsupervised
Feature Extraction," IEEE International Joint Conference on Neural Networks, 2:65-70 (1990).

12. Foldifi, Peter. "Adaptive Network for Optimal Linear Feature Extraction," IEEE International
Joint Conference on Neural Networks, 1:401-405 (1989).

13. Gay, Kevin P. Autonomous Face Recognition. MS thesis, AFIT/GE/ENG/92D. School of Engi-
neering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1992.

14. Geschwind, Norman. "Specializations of the Human Brain," Scientific American, 107-120
(September 1979).

15. Goble, James R. Face Recognition Using the Discrete Cosine Transform. MS thesis,
AFIT/GEENG/91 D-21. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1991.

16. Harnon, et al. "Machine Identification of Faces," Pattern Recognition, 13:97-110 (1981).

17. Kung, S. and K. Diamantaras. "A Neural Network Learning Algorithm for Adaptive Principal
Component Extraction (APEX)," IEEE ICASSP, 1:861-864 (1990).

18. Lambert, Lawrence C. Evaluation and Enhancement of the AFIT Autonomous Face Recognition
Machine. MS thesis, AFIT/GE/ENG/87D-35. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1987.

BIB-.



19. Lei, Xu. and Alan Yuille. "Robust PCA Learning Rules Based on Statistical Physics Approach,"
IEEE IJCNN, 1:812-817 (June 1992).

20. Meadows, J. C. "Varieties of Prosopagnosia," Journal of Neurology, Neurosurgery, and Psychi-
atry, 498-501 (1974).

21. Nakagawa, S.Jt al. "Dimensionality Reduction of Dynamical Patterns using a Neural Network,"
Advances in NIPS, unk:unk (1990).

22. Oja, Erkki. "A Simplified Neuron Model as a Principal Component Extractor," Journal of
Mathematical Biology, 15:267-273 (1982).

23. Oja, Erkki. "Data Compression, Feature Extraction, and Autoassociation in Feedforward Neural
Networks," Artificial Neural Networks, unk:737-745 (1991).

24. Oja, et al. "Learning in Nonlinear Constrained Hebbian Networks," Artificial Neural Networks,

unk:385-389 (1991).

25. Payne, Tanya et al. "Backpropagation Neural Networks for Facial Verification Update," Los
Alamos National Laboratory (1992 Unpublished).

26. Press, et al. Numerical Recipes In C. Cambridge: Cambridge University Press, 1988.

27. Robb, Barbara C. Autonomous Face Recognition Machine Using a Fourier Feature Set. MS
thesis, AFIT/GE/ENG/87D-35. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1987.

28. Rolls, et al. "The effect of learning on the face selective responses of neurons in the cortex in the
superior temporal sulcus of the monkey," Experimental Brain Research, 76:153-164 (1989).

29. Ruck, Dennis W. Characterization ofMultilayer Perceptrons and theirApplication to Multisensor
Automatic Target Detection. PhD dissertation, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1990.

30. Runyon, Kenneth R. Face Recognition System. MS thesis, AF1T/GE/ENG/92D. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1992.

31. Russell, Robert L. Performance of a Working Face Recognition Machine Using Cortical Thought
Theory. MS thesis, AFIT/GE/ENG/85D. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1985.

32. Samal, Ashok and Prasana A. Iyengar. "Automatic Recognition and Analysis of Human Faces
and Facial Expressions: A Survey," Pattern Recognition, 25:65-77 (1992).

33. Sander, David D. Enhanced Autonomous Face Recognition Machine. MS thesis,
AFrT/GE/ENG/89D- 19. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1989.

34. Sanger, Terence. "Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural
Network," Neural Networks, 2:459-473 (1989).

35. Smith, Edward J. Development of an Autonomous Face Recognition Machine. MS thesis,
AFIT/GE/ENG/86D-36. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1986.

36. Suarez, Pedro F Face Recognition with the Karhunen-Loeve Transform. MS thesis,
AFrT/GE/ENG/91D-54. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1991.

BIB-2



37. Tan', Gregory L. Multi-Layered Feedforward Neural Networks for Image Segmentation. PhD
dissertation, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1991.

38. Tou, Julius C. and Rafael C. Gonzalez. Pattern Recognition Principles. Reading, MA: Addison-
Wesley Publishing, 1974.

39. Turk, Matthew A. and Alex P. Pentland. "Eigenfaces for Recognition," Journal of Cognitive
Neuroscience, 1-28 (September 1990).

40. Turk, Matthew A. and Alex P. Pentland. "Recognition in Face Space," SPIE Intelligent Robots
and Computer Vision IX: Algotithms and Techniques, 1381:43-54 (1990).

41. Valentine, Tim and Andre Ferrara. "Typicality in Categorization, recognition and identification:
Evidence from face recognition," British Journal of Psychology, 82:87-102 (1982).

42. Wu, Chyuan Jy and Jun S. Huang. "Human Face Profile Recognition by Computer," Pattern
Recognition, 23:255-259 (1990).

BIB-3



Vita

Captain Dennis L. Krepp was born on March 6, 1958 in Ephrata, Pennsylvania. He graduated

from Warwick High School in Lititz, Pennsylvania in 1976. Capt Krepp entered the Air Force in

May, 1978 as a Munitions Systems Specialist He served three years at Davis-Monthan AFB, Arizona

with the 355th Equipment Maintenance Squadron, and three years at Lowry AFB, Colorado with the

3460 Technical Training Wing. He entered the Airman's Education and Commissioning Program in

August, 1984 and completed a Bachelor of Science degree in Electrical Engineering at the University

of Colorado in May, 1987. He served three years with the Electronic Systems Division at Hanscom

AFB, Massachusetts before entering the School of Engineering, Air Force Institute of Technology in

June, 1991. He is married to Karen (Muije) Krepp of Green River, Wyoming and has two children:

Michelle Lynn, age 11, and R. Adam, age 9.

Permanent address: 1069 Furnace Hill Pike
Lititz, Pennsylvania 17543

ViTA-I



REPORT DOCUMENTATION PAGE oMB A0r04 o088

I A. FN(" U E ONL Y" i 2 REPOT.RT A tE R _E T T YPE AN ) -)A rEs , VERED

December 1992 Master's Thesis

Face Recognition With Neural Networks

Dennis L. Krepp, Captain, USAF

Air Force Institute of Technology AIT. /GE/ENG-'-D-2.
WPAFB OH 45433-6583 AFIT/GE/ENG/92D-23

Maj Rodney Winter
Govt Agcy
9800 Savage Rd
Ft Meade, MD 20755-6000

Distribution Unlimited

This study investigated neural networks for face verification and classification. The research concentrated on
developing a ne'iral network based feature extractor and/or classifier to perform authorized user verificat~oa, in a
realistic work environment. Recognition accuracy, system assumptions, training time, and execution time were
analyzed to determine the feasibility of a neural network approach. Data was collected using a camcorder and
two segmentation schemes: manual segmentation and motion-based, automatic segmentation. Data consisted of
over 2000, 32x32 pixel, 8 bit gray scale images of 52 subjects; each subject had two to ten days worth of images
collected. Several training and test sets were created and then used to train and test the following networks:
a backpropagation network using the raw data as inputs; a backpropagation network using Karhunen-Lo!ve
Transform coefficients, computed from the raw data, as inputs; and a backpropagation network using features
extracted by an identity network as inputs. The classification networks performed well on constrained, single
day captured, data bases but performed poorly on data gathered over multiple days . For multiple days, a
verification network using a single hidden layer with backpropagation obtained 95% verification accuracy and is
suitable for use in a face verification system.

7141 5 7,117 '. 1fý, - . .- -_. -. 1, .. tG

face recognition, neural networks, identity networks, backpropagation, user verifica-1 122

tion

1/ S'J f(LAS ')r1CAT!(N 1;i ',Eflj1r V (I.ASSIH( APT , 19 A0URT 7 -7 TýýTO(ýN ~ r'>7T. ~
0r PVIR 0'Tr PAGE f'A 7TA'3 I
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL


